মূল বিষয়বস্তুতে এড়িয়ে যান
a, b এর জন্য সমাধান করুন
Tick mark Image

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

a+b=4,2a-b=1
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
a+b=4
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের a পৃথক করে a-এর জন্য সমাধান করুন।
a=-b+4
সমীকরণের উভয় দিক থেকে b বাদ দিন।
2\left(-b+4\right)-b=1
অন্য সমীকরণ 2a-b=1 এ a এর জন্য -b+4 বিপরীত করু ন।
-2b+8-b=1
2 কে -b+4 বার গুণ করুন।
-3b+8=1
-b এ -2b যোগ করুন।
-3b=-7
সমীকরণের উভয় দিক থেকে 8 বাদ দিন।
b=\frac{7}{3}
-3 দিয়ে উভয় দিককে ভাগ করুন।
a=-\frac{7}{3}+4
a=-b+4 এ b এর জন্য পরিবর্ত হিসাবে \frac{7}{3} ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি a এর জন্য সরাসরি সমাধান করতে পারেন।
a=\frac{5}{3}
-\frac{7}{3} এ 4 যোগ করুন।
a=\frac{5}{3},b=\frac{7}{3}
সিস্টেম এখন সমাধান করা হয়েছে।
a+b=4,2a-b=1
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}1&1\\2&-1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}4\\1\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}1&1\\2&-1\end{matrix}\right))\left(\begin{matrix}1&1\\2&-1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&-1\end{matrix}\right))\left(\begin{matrix}4\\1\end{matrix}\right)
\left(\begin{matrix}1&1\\2&-1\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&-1\end{matrix}\right))\left(\begin{matrix}4\\1\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&-1\end{matrix}\right))\left(\begin{matrix}4\\1\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-2}&-\frac{1}{-1-2}\\-\frac{2}{-1-2}&\frac{1}{-1-2}\end{matrix}\right)\left(\begin{matrix}4\\1\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&\frac{1}{3}\\\frac{2}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}4\\1\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\times 4+\frac{1}{3}\\\frac{2}{3}\times 4-\frac{1}{3}\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{5}{3}\\\frac{7}{3}\end{matrix}\right)
পাটিগণিত করুন।
a=\frac{5}{3},b=\frac{7}{3}
ম্যাট্রিক্স এলিমেন্ট a এবং b বের করুন।
a+b=4,2a-b=1
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
2a+2b=2\times 4,2a-b=1
a এবং 2a সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 2 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 1 দিয়ে গুণ করুন।
2a+2b=8,2a-b=1
সিমপ্লিফাই।
2a-2a+2b+b=8-1
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে 2a+2b=8 থেকে 2a-b=1 বাদ দিন।
2b+b=8-1
-2a এ 2a যোগ করুন। টার্ম 2a এবং -2a বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
3b=8-1
b এ 2b যোগ করুন।
3b=7
-1 এ 8 যোগ করুন।
b=\frac{7}{3}
3 দিয়ে উভয় দিককে ভাগ করুন।
2a-\frac{7}{3}=1
2a-b=1 এ b এর জন্য পরিবর্ত হিসাবে \frac{7}{3} ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি a এর জন্য সরাসরি সমাধান করতে পারেন।
2a=\frac{10}{3}
সমীকরণের উভয় দিকে \frac{7}{3} যোগ করুন।
a=\frac{5}{3}
2 দিয়ে উভয় দিককে ভাগ করুন।
a=\frac{5}{3},b=\frac{7}{3}
সিস্টেম এখন সমাধান করা হয়েছে।