মূল বিষয়বস্তুতে এড়িয়ে যান
x, y এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

6x-6y=-30,-10x+6y=22
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
6x-6y=-30
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
6x=6y-30
সমীকরণের উভয় দিকে 6y যোগ করুন।
x=\frac{1}{6}\left(6y-30\right)
6 দিয়ে উভয় দিককে ভাগ করুন।
x=y-5
\frac{1}{6} কে -30+6y বার গুণ করুন।
-10\left(y-5\right)+6y=22
অন্য সমীকরণ -10x+6y=22 এ x এর জন্য y-5 বিপরীত করু ন।
-10y+50+6y=22
-10 কে y-5 বার গুণ করুন।
-4y+50=22
6y এ -10y যোগ করুন।
-4y=-28
সমীকরণের উভয় দিক থেকে 50 বাদ দিন।
y=7
-4 দিয়ে উভয় দিককে ভাগ করুন।
x=7-5
x=y-5 এ y এর জন্য পরিবর্ত হিসাবে 7 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=2
7 এ -5 যোগ করুন।
x=2,y=7
সিস্টেম এখন সমাধান করা হয়েছে।
6x-6y=-30,-10x+6y=22
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}6&-6\\-10&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-30\\22\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}6&-6\\-10&6\end{matrix}\right))\left(\begin{matrix}6&-6\\-10&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-6\\-10&6\end{matrix}\right))\left(\begin{matrix}-30\\22\end{matrix}\right)
\left(\begin{matrix}6&-6\\-10&6\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-6\\-10&6\end{matrix}\right))\left(\begin{matrix}-30\\22\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-6\\-10&6\end{matrix}\right))\left(\begin{matrix}-30\\22\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{6\times 6-\left(-6\left(-10\right)\right)}&-\frac{-6}{6\times 6-\left(-6\left(-10\right)\right)}\\-\frac{-10}{6\times 6-\left(-6\left(-10\right)\right)}&\frac{6}{6\times 6-\left(-6\left(-10\right)\right)}\end{matrix}\right)\left(\begin{matrix}-30\\22\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}&-\frac{1}{4}\\-\frac{5}{12}&-\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}-30\\22\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}\left(-30\right)-\frac{1}{4}\times 22\\-\frac{5}{12}\left(-30\right)-\frac{1}{4}\times 22\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\7\end{matrix}\right)
পাটিগণিত করুন।
x=2,y=7
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
6x-6y=-30,-10x+6y=22
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
-10\times 6x-10\left(-6\right)y=-10\left(-30\right),6\left(-10\right)x+6\times 6y=6\times 22
6x এবং -10x সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে -10 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 6 দিয়ে গুণ করুন।
-60x+60y=300,-60x+36y=132
সিমপ্লিফাই।
-60x+60x+60y-36y=300-132
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে -60x+60y=300 থেকে -60x+36y=132 বাদ দিন।
60y-36y=300-132
60x এ -60x যোগ করুন। টার্ম -60x এবং 60x বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
24y=300-132
-36y এ 60y যোগ করুন।
24y=168
-132 এ 300 যোগ করুন।
y=7
24 দিয়ে উভয় দিককে ভাগ করুন।
-10x+6\times 7=22
-10x+6y=22 এ y এর জন্য পরিবর্ত হিসাবে 7 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
-10x+42=22
6 কে 7 বার গুণ করুন।
-10x=-20
সমীকরণের উভয় দিক থেকে 42 বাদ দিন।
x=2
-10 দিয়ে উভয় দিককে ভাগ করুন।
x=2,y=7
সিস্টেম এখন সমাধান করা হয়েছে।