মূল বিষয়বস্তুতে এড়িয়ে যান
m, n এর জন্য সমাধান করুন
Tick mark Image

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

2m-3n=1,m+n=-3
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
2m-3n=1
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের m পৃথক করে m-এর জন্য সমাধান করুন।
2m=3n+1
সমীকরণের উভয় দিকে 3n যোগ করুন।
m=\frac{1}{2}\left(3n+1\right)
2 দিয়ে উভয় দিককে ভাগ করুন।
m=\frac{3}{2}n+\frac{1}{2}
\frac{1}{2} কে 3n+1 বার গুণ করুন।
\frac{3}{2}n+\frac{1}{2}+n=-3
অন্য সমীকরণ m+n=-3 এ m এর জন্য \frac{3n+1}{2} বিপরীত করু ন।
\frac{5}{2}n+\frac{1}{2}=-3
n এ \frac{3n}{2} যোগ করুন।
\frac{5}{2}n=-\frac{7}{2}
সমীকরণের উভয় দিক থেকে \frac{1}{2} বাদ দিন।
n=-\frac{7}{5}
\frac{5}{2} দিয়ে সমীকরণের উভয় দিককে ভাগ করুন, যা বিপরীত ভগ্নাংশ দ্বারা উভয় দিককে গুণ করার মতো একই।
m=\frac{3}{2}\left(-\frac{7}{5}\right)+\frac{1}{2}
m=\frac{3}{2}n+\frac{1}{2} এ n এর জন্য পরিবর্ত হিসাবে -\frac{7}{5} ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি m এর জন্য সরাসরি সমাধান করতে পারেন।
m=-\frac{21}{10}+\frac{1}{2}
লবকে তার মানের সম পরিমাণ বার এবং হরকে তার মানের সম পরিমাণ বার গুণ করার মাধ্যমে \frac{3}{2} কে -\frac{7}{5} বার গুণ করুন। তারপর সম্ভব হলে ভগ্নাংশটিকে ছোট টার্মে হ্রাস করুন।
m=-\frac{8}{5}
কমন হর খুঁজে এবং লব যোগ করার মাধ্যমে -\frac{21}{10} এ \frac{1}{2} যোগ করুন। তারপর সম্ভব হলে ভগ্নাংশটিকে ছোট টার্মে হ্রাস করুন।
m=-\frac{8}{5},n=-\frac{7}{5}
সিস্টেম এখন সমাধান করা হয়েছে।
2m-3n=1,m+n=-3
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}2&-3\\1&1\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}1\\-3\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}2&-3\\1&1\end{matrix}\right))\left(\begin{matrix}2&-3\\1&1\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\1&1\end{matrix}\right))\left(\begin{matrix}1\\-3\end{matrix}\right)
\left(\begin{matrix}2&-3\\1&1\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\1&1\end{matrix}\right))\left(\begin{matrix}1\\-3\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\1&1\end{matrix}\right))\left(\begin{matrix}1\\-3\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-\left(-3\right)}&-\frac{-3}{2-\left(-3\right)}\\-\frac{1}{2-\left(-3\right)}&\frac{2}{2-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}1\\-3\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{3}{5}\\-\frac{1}{5}&\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}1\\-3\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}+\frac{3}{5}\left(-3\right)\\-\frac{1}{5}+\frac{2}{5}\left(-3\right)\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}-\frac{8}{5}\\-\frac{7}{5}\end{matrix}\right)
পাটিগণিত করুন।
m=-\frac{8}{5},n=-\frac{7}{5}
ম্যাট্রিক্স এলিমেন্ট m এবং n বের করুন।
2m-3n=1,m+n=-3
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
2m-3n=1,2m+2n=2\left(-3\right)
2m এবং m সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 1 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 2 দিয়ে গুণ করুন।
2m-3n=1,2m+2n=-6
সিমপ্লিফাই।
2m-2m-3n-2n=1+6
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে 2m-3n=1 থেকে 2m+2n=-6 বাদ দিন।
-3n-2n=1+6
-2m এ 2m যোগ করুন। টার্ম 2m এবং -2m বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
-5n=1+6
-2n এ -3n যোগ করুন।
-5n=7
6 এ 1 যোগ করুন।
n=-\frac{7}{5}
-5 দিয়ে উভয় দিককে ভাগ করুন।
m-\frac{7}{5}=-3
m+n=-3 এ n এর জন্য পরিবর্ত হিসাবে -\frac{7}{5} ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি m এর জন্য সরাসরি সমাধান করতে পারেন।
m=-\frac{8}{5}
সমীকরণের উভয় দিকে \frac{7}{5} যোগ করুন।
m=-\frac{8}{5},n=-\frac{7}{5}
সিস্টেম এখন সমাধান করা হয়েছে।