x, y এর জন্য সমাধান করুন
x=2
y=3
গ্রাফ
শেয়ার করুন
ক্লিপবোর্ডে কপি করা হয়েছে
0.4x+0.3y=1.7,0.7x-0.2y=0.8
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
0.4x+0.3y=1.7
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
0.4x=-0.3y+1.7
সমীকরণের উভয় দিক থেকে \frac{3y}{10} বাদ দিন।
x=2.5\left(-0.3y+1.7\right)
0.4 দিয়ে সমীকরণের উভয় দিককে ভাগ করুন, যা বিপরীত ভগ্নাংশ দ্বারা উভয় দিককে গুণ করার মতো একই।
x=-0.75y+4.25
2.5 কে \frac{-3y+17}{10} বার গুণ করুন।
0.7\left(-0.75y+4.25\right)-0.2y=0.8
অন্য সমীকরণ 0.7x-0.2y=0.8 এ x এর জন্য \frac{-3y+17}{4} বিপরীত করু ন।
-0.525y+2.975-0.2y=0.8
0.7 কে \frac{-3y+17}{4} বার গুণ করুন।
-0.725y+2.975=0.8
-\frac{y}{5} এ -\frac{21y}{40} যোগ করুন।
-0.725y=-2.175
সমীকরণের উভয় দিক থেকে 2.975 বাদ দিন।
y=3
-0.725 দিয়ে সমীকরণের উভয় দিককে ভাগ করুন, যা বিপরীত ভগ্নাংশ দ্বারা উভয় দিককে গুণ করার মতো একই।
x=-0.75\times 3+4.25
x=-0.75y+4.25 এ y এর জন্য পরিবর্ত হিসাবে 3 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=\frac{-9+17}{4}
-0.75 কে 3 বার গুণ করুন।
x=2
কমন হর খুঁজে এবং লব যোগ করার মাধ্যমে -2.25 এ 4.25 যোগ করুন। তারপর সম্ভব হলে ভগ্নাংশটিকে ছোট টার্মে হ্রাস করুন।
x=2,y=3
সিস্টেম এখন সমাধান করা হয়েছে।
0.4x+0.3y=1.7,0.7x-0.2y=0.8
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}0.4&0.3\\0.7&-0.2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1.7\\0.8\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}0.4&0.3\\0.7&-0.2\end{matrix}\right))\left(\begin{matrix}0.4&0.3\\0.7&-0.2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.4&0.3\\0.7&-0.2\end{matrix}\right))\left(\begin{matrix}1.7\\0.8\end{matrix}\right)
\left(\begin{matrix}0.4&0.3\\0.7&-0.2\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.4&0.3\\0.7&-0.2\end{matrix}\right))\left(\begin{matrix}1.7\\0.8\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.4&0.3\\0.7&-0.2\end{matrix}\right))\left(\begin{matrix}1.7\\0.8\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{0.2}{0.4\left(-0.2\right)-0.3\times 0.7}&-\frac{0.3}{0.4\left(-0.2\right)-0.3\times 0.7}\\-\frac{0.7}{0.4\left(-0.2\right)-0.3\times 0.7}&\frac{0.4}{0.4\left(-0.2\right)-0.3\times 0.7}\end{matrix}\right)\left(\begin{matrix}1.7\\0.8\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{20}{29}&\frac{30}{29}\\\frac{70}{29}&-\frac{40}{29}\end{matrix}\right)\left(\begin{matrix}1.7\\0.8\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{20}{29}\times 1.7+\frac{30}{29}\times 0.8\\\frac{70}{29}\times 1.7-\frac{40}{29}\times 0.8\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\3\end{matrix}\right)
পাটিগণিত করুন।
x=2,y=3
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
0.4x+0.3y=1.7,0.7x-0.2y=0.8
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
0.7\times 0.4x+0.7\times 0.3y=0.7\times 1.7,0.4\times 0.7x+0.4\left(-0.2\right)y=0.4\times 0.8
\frac{2x}{5} এবং \frac{7x}{10} সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 0.7 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 0.4 দিয়ে গুণ করুন।
0.28x+0.21y=1.19,0.28x-0.08y=0.32
সিমপ্লিফাই।
0.28x-0.28x+0.21y+0.08y=1.19-0.32
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে 0.28x+0.21y=1.19 থেকে 0.28x-0.08y=0.32 বাদ দিন।
0.21y+0.08y=1.19-0.32
-\frac{7x}{25} এ \frac{7x}{25} যোগ করুন। টার্ম \frac{7x}{25} এবং -\frac{7x}{25} বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
0.29y=1.19-0.32
\frac{2y}{25} এ \frac{21y}{100} যোগ করুন।
0.29y=0.87
কমন হর খুঁজে এবং লব যোগ করার মাধ্যমে -0.32 এ 1.19 যোগ করুন। তারপর সম্ভব হলে ভগ্নাংশটিকে ছোট টার্মে হ্রাস করুন।
y=3
0.29 দিয়ে সমীকরণের উভয় দিককে ভাগ করুন, যা বিপরীত ভগ্নাংশ দ্বারা উভয় দিককে গুণ করার মতো একই।
0.7x-0.2\times 3=0.8
0.7x-0.2y=0.8 এ y এর জন্য পরিবর্ত হিসাবে 3 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
0.7x-0.6=0.8
-0.2 কে 3 বার গুণ করুন।
0.7x=1.4
সমীকরণের উভয় দিকে 0.6 যোগ করুন।
x=2
0.7 দিয়ে সমীকরণের উভয় দিককে ভাগ করুন, যা বিপরীত ভগ্নাংশ দ্বারা উভয় দিককে গুণ করার মতো একই।
x=2,y=3
সিস্টেম এখন সমাধান করা হয়েছে।
উদাহরণ
দ্বিঘাত সমীকরণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্রিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
রৈখিক সমীকরণ
y = 3x + 4
পাটিগণিত
699 * 533
মেট্রিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকরণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ডিফারেন্সিয়েশন
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইন্টিগ্রেশন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
লিমিট
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}