x, y এর জন্য সমাধান করুন
x=8
y=5
গ্রাফ
শেয়ার করুন
ক্লিপবোর্ডে কপি করা হয়েছে
-5x+8y=0,-7x-8y=-96
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
-5x+8y=0
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
-5x=-8y
সমীকরণের উভয় দিক থেকে 8y বাদ দিন।
x=-\frac{1}{5}\left(-8\right)y
-5 দিয়ে উভয় দিককে ভাগ করুন।
x=\frac{8}{5}y
-\frac{1}{5} কে -8y বার গুণ করুন।
-7\times \frac{8}{5}y-8y=-96
অন্য সমীকরণ -7x-8y=-96 এ x এর জন্য \frac{8y}{5} বিপরীত করু ন।
-\frac{56}{5}y-8y=-96
-7 কে \frac{8y}{5} বার গুণ করুন।
-\frac{96}{5}y=-96
-8y এ -\frac{56y}{5} যোগ করুন।
y=5
-\frac{96}{5} দিয়ে সমীকরণের উভয় দিককে ভাগ করুন, যা বিপরীত ভগ্নাংশ দ্বারা উভয় দিককে গুণ করার মতো একই।
x=\frac{8}{5}\times 5
x=\frac{8}{5}y এ y এর জন্য পরিবর্ত হিসাবে 5 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=8
\frac{8}{5} কে 5 বার গুণ করুন।
x=8,y=5
সিস্টেম এখন সমাধান করা হয়েছে।
-5x+8y=0,-7x-8y=-96
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}-5&8\\-7&-8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-96\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}-5&8\\-7&-8\end{matrix}\right))\left(\begin{matrix}-5&8\\-7&-8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&8\\-7&-8\end{matrix}\right))\left(\begin{matrix}0\\-96\end{matrix}\right)
\left(\begin{matrix}-5&8\\-7&-8\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&8\\-7&-8\end{matrix}\right))\left(\begin{matrix}0\\-96\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&8\\-7&-8\end{matrix}\right))\left(\begin{matrix}0\\-96\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{8}{-5\left(-8\right)-8\left(-7\right)}&-\frac{8}{-5\left(-8\right)-8\left(-7\right)}\\-\frac{-7}{-5\left(-8\right)-8\left(-7\right)}&-\frac{5}{-5\left(-8\right)-8\left(-7\right)}\end{matrix}\right)\left(\begin{matrix}0\\-96\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{12}&-\frac{1}{12}\\\frac{7}{96}&-\frac{5}{96}\end{matrix}\right)\left(\begin{matrix}0\\-96\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{12}\left(-96\right)\\-\frac{5}{96}\left(-96\right)\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\5\end{matrix}\right)
পাটিগণিত করুন।
x=8,y=5
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
-5x+8y=0,-7x-8y=-96
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
-7\left(-5\right)x-7\times 8y=0,-5\left(-7\right)x-5\left(-8\right)y=-5\left(-96\right)
-5x এবং -7x সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে -7 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে -5 দিয়ে গুণ করুন।
35x-56y=0,35x+40y=480
সিমপ্লিফাই।
35x-35x-56y-40y=-480
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে 35x-56y=0 থেকে 35x+40y=480 বাদ দিন।
-56y-40y=-480
-35x এ 35x যোগ করুন। টার্ম 35x এবং -35x বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
-96y=-480
-40y এ -56y যোগ করুন।
y=5
-96 দিয়ে উভয় দিককে ভাগ করুন।
-7x-8\times 5=-96
-7x-8y=-96 এ y এর জন্য পরিবর্ত হিসাবে 5 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
-7x-40=-96
-8 কে 5 বার গুণ করুন।
-7x=-56
সমীকরণের উভয় দিকে 40 যোগ করুন।
x=8
-7 দিয়ে উভয় দিককে ভাগ করুন।
x=8,y=5
সিস্টেম এখন সমাধান করা হয়েছে।
উদাহরণ
দ্বিঘাত সমীকরণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্রিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
রৈখিক সমীকরণ
y = 3x + 4
পাটিগণিত
699 * 533
মেট্রিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকরণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ডিফারেন্সিয়েশন
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইন্টিগ্রেশন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
লিমিট
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}