মূল বিষয়বস্তুতে এড়িয়ে যান
x, y এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

-5x+3y=3,4x+3y=30
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
-5x+3y=3
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
-5x=-3y+3
সমীকরণের উভয় দিক থেকে 3y বাদ দিন।
x=-\frac{1}{5}\left(-3y+3\right)
-5 দিয়ে উভয় দিককে ভাগ করুন।
x=\frac{3}{5}y-\frac{3}{5}
-\frac{1}{5} কে -3y+3 বার গুণ করুন।
4\left(\frac{3}{5}y-\frac{3}{5}\right)+3y=30
অন্য সমীকরণ 4x+3y=30 এ x এর জন্য \frac{-3+3y}{5} বিপরীত করু ন।
\frac{12}{5}y-\frac{12}{5}+3y=30
4 কে \frac{-3+3y}{5} বার গুণ করুন।
\frac{27}{5}y-\frac{12}{5}=30
3y এ \frac{12y}{5} যোগ করুন।
\frac{27}{5}y=\frac{162}{5}
সমীকরণের উভয় দিকে \frac{12}{5} যোগ করুন।
y=6
\frac{27}{5} দিয়ে সমীকরণের উভয় দিককে ভাগ করুন, যা বিপরীত ভগ্নাংশ দ্বারা উভয় দিককে গুণ করার মতো একই।
x=\frac{3}{5}\times 6-\frac{3}{5}
x=\frac{3}{5}y-\frac{3}{5} এ y এর জন্য পরিবর্ত হিসাবে 6 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=\frac{18-3}{5}
\frac{3}{5} কে 6 বার গুণ করুন।
x=3
কমন হর খুঁজে এবং লব যোগ করার মাধ্যমে \frac{18}{5} এ -\frac{3}{5} যোগ করুন। তারপর সম্ভব হলে ভগ্নাংশটিকে ছোট টার্মে হ্রাস করুন।
x=3,y=6
সিস্টেম এখন সমাধান করা হয়েছে।
-5x+3y=3,4x+3y=30
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}-5&3\\4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\30\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}-5&3\\4&3\end{matrix}\right))\left(\begin{matrix}-5&3\\4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&3\\4&3\end{matrix}\right))\left(\begin{matrix}3\\30\end{matrix}\right)
\left(\begin{matrix}-5&3\\4&3\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&3\\4&3\end{matrix}\right))\left(\begin{matrix}3\\30\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&3\\4&3\end{matrix}\right))\left(\begin{matrix}3\\30\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{-5\times 3-3\times 4}&-\frac{3}{-5\times 3-3\times 4}\\-\frac{4}{-5\times 3-3\times 4}&-\frac{5}{-5\times 3-3\times 4}\end{matrix}\right)\left(\begin{matrix}3\\30\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{9}&\frac{1}{9}\\\frac{4}{27}&\frac{5}{27}\end{matrix}\right)\left(\begin{matrix}3\\30\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{9}\times 3+\frac{1}{9}\times 30\\\frac{4}{27}\times 3+\frac{5}{27}\times 30\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\6\end{matrix}\right)
পাটিগণিত করুন।
x=3,y=6
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
-5x+3y=3,4x+3y=30
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
-5x-4x+3y-3y=3-30
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে -5x+3y=3 থেকে 4x+3y=30 বাদ দিন।
-5x-4x=3-30
-3y এ 3y যোগ করুন। টার্ম 3y এবং -3y বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
-9x=3-30
-4x এ -5x যোগ করুন।
-9x=-27
-30 এ 3 যোগ করুন।
x=3
-9 দিয়ে উভয় দিককে ভাগ করুন।
4\times 3+3y=30
4x+3y=30 এ x এর জন্য পরিবর্ত হিসাবে 3 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি y এর জন্য সরাসরি সমাধান করতে পারেন।
12+3y=30
4 কে 3 বার গুণ করুন।
3y=18
সমীকরণের উভয় দিক থেকে 12 বাদ দিন।
y=6
3 দিয়ে উভয় দিককে ভাগ করুন।
x=3,y=6
সিস্টেম এখন সমাধান করা হয়েছে।