মূল বিষয়বস্তুতে এড়িয়ে যান
x, y এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

-2x+15y=-24,2x+9y=24
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
-2x+15y=-24
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
-2x=-15y-24
সমীকরণের উভয় দিক থেকে 15y বাদ দিন।
x=-\frac{1}{2}\left(-15y-24\right)
-2 দিয়ে উভয় দিককে ভাগ করুন।
x=\frac{15}{2}y+12
-\frac{1}{2} কে -15y-24 বার গুণ করুন।
2\left(\frac{15}{2}y+12\right)+9y=24
অন্য সমীকরণ 2x+9y=24 এ x এর জন্য \frac{15y}{2}+12 বিপরীত করু ন।
15y+24+9y=24
2 কে \frac{15y}{2}+12 বার গুণ করুন।
24y+24=24
9y এ 15y যোগ করুন।
24y=0
সমীকরণের উভয় দিক থেকে 24 বাদ দিন।
y=0
24 দিয়ে উভয় দিককে ভাগ করুন।
x=12
x=\frac{15}{2}y+12 এ y এর জন্য পরিবর্ত হিসাবে 0 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=12,y=0
সিস্টেম এখন সমাধান করা হয়েছে।
-2x+15y=-24,2x+9y=24
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}-2&15\\2&9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-24\\24\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}-2&15\\2&9\end{matrix}\right))\left(\begin{matrix}-2&15\\2&9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&15\\2&9\end{matrix}\right))\left(\begin{matrix}-24\\24\end{matrix}\right)
\left(\begin{matrix}-2&15\\2&9\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&15\\2&9\end{matrix}\right))\left(\begin{matrix}-24\\24\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&15\\2&9\end{matrix}\right))\left(\begin{matrix}-24\\24\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{-2\times 9-15\times 2}&-\frac{15}{-2\times 9-15\times 2}\\-\frac{2}{-2\times 9-15\times 2}&-\frac{2}{-2\times 9-15\times 2}\end{matrix}\right)\left(\begin{matrix}-24\\24\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{16}&\frac{5}{16}\\\frac{1}{24}&\frac{1}{24}\end{matrix}\right)\left(\begin{matrix}-24\\24\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{16}\left(-24\right)+\frac{5}{16}\times 24\\\frac{1}{24}\left(-24\right)+\frac{1}{24}\times 24\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12\\0\end{matrix}\right)
পাটিগণিত করুন।
x=12,y=0
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
-2x+15y=-24,2x+9y=24
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
2\left(-2\right)x+2\times 15y=2\left(-24\right),-2\times 2x-2\times 9y=-2\times 24
-2x এবং 2x সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 2 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে -2 দিয়ে গুণ করুন।
-4x+30y=-48,-4x-18y=-48
সিমপ্লিফাই।
-4x+4x+30y+18y=-48+48
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে -4x+30y=-48 থেকে -4x-18y=-48 বাদ দিন।
30y+18y=-48+48
4x এ -4x যোগ করুন। টার্ম -4x এবং 4x বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
48y=-48+48
18y এ 30y যোগ করুন।
48y=0
48 এ -48 যোগ করুন।
y=0
48 দিয়ে উভয় দিককে ভাগ করুন।
2x=24
2x+9y=24 এ y এর জন্য পরিবর্ত হিসাবে 0 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=12
2 দিয়ে উভয় দিককে ভাগ করুন।
x=12,y=0
সিস্টেম এখন সমাধান করা হয়েছে।