x, y এর জন্য সমাধান করুন
x=4
y=3
গ্রাফ
শেয়ার করুন
ক্লিপবোর্ডে কপি করা হয়েছে
\frac{1}{8}x-y=-\frac{5}{2},3x+\frac{1}{3}y=13
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
\frac{1}{8}x-y=-\frac{5}{2}
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
\frac{1}{8}x=y-\frac{5}{2}
সমীকরণের উভয় দিকে y যোগ করুন।
x=8\left(y-\frac{5}{2}\right)
8 দিয়ে উভয় দিককে গুণ করুন।
x=8y-20
8 কে y-\frac{5}{2} বার গুণ করুন।
3\left(8y-20\right)+\frac{1}{3}y=13
অন্য সমীকরণ 3x+\frac{1}{3}y=13 এ x এর জন্য 8y-20 বিপরীত করু ন।
24y-60+\frac{1}{3}y=13
3 কে 8y-20 বার গুণ করুন।
\frac{73}{3}y-60=13
\frac{y}{3} এ 24y যোগ করুন।
\frac{73}{3}y=73
সমীকরণের উভয় দিকে 60 যোগ করুন।
y=3
\frac{73}{3} দিয়ে সমীকরণের উভয় দিককে ভাগ করুন, যা বিপরীত ভগ্নাংশ দ্বারা উভয় দিককে গুণ করার মতো একই।
x=8\times 3-20
x=8y-20 এ y এর জন্য পরিবর্ত হিসাবে 3 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=24-20
8 কে 3 বার গুণ করুন।
x=4
24 এ -20 যোগ করুন।
x=4,y=3
সিস্টেম এখন সমাধান করা হয়েছে।
\frac{1}{8}x-y=-\frac{5}{2},3x+\frac{1}{3}y=13
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}\frac{1}{8}&-1\\3&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{2}\\13\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}\frac{1}{8}&-1\\3&\frac{1}{3}\end{matrix}\right))\left(\begin{matrix}\frac{1}{8}&-1\\3&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{8}&-1\\3&\frac{1}{3}\end{matrix}\right))\left(\begin{matrix}-\frac{5}{2}\\13\end{matrix}\right)
\left(\begin{matrix}\frac{1}{8}&-1\\3&\frac{1}{3}\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{8}&-1\\3&\frac{1}{3}\end{matrix}\right))\left(\begin{matrix}-\frac{5}{2}\\13\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{8}&-1\\3&\frac{1}{3}\end{matrix}\right))\left(\begin{matrix}-\frac{5}{2}\\13\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{\frac{1}{3}}{\frac{1}{8}\times \frac{1}{3}-\left(-3\right)}&-\frac{-1}{\frac{1}{8}\times \frac{1}{3}-\left(-3\right)}\\-\frac{3}{\frac{1}{8}\times \frac{1}{3}-\left(-3\right)}&\frac{\frac{1}{8}}{\frac{1}{8}\times \frac{1}{3}-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}-\frac{5}{2}\\13\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{73}&\frac{24}{73}\\-\frac{72}{73}&\frac{3}{73}\end{matrix}\right)\left(\begin{matrix}-\frac{5}{2}\\13\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{73}\left(-\frac{5}{2}\right)+\frac{24}{73}\times 13\\-\frac{72}{73}\left(-\frac{5}{2}\right)+\frac{3}{73}\times 13\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\3\end{matrix}\right)
পাটিগণিত করুন।
x=4,y=3
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
\frac{1}{8}x-y=-\frac{5}{2},3x+\frac{1}{3}y=13
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
3\times \frac{1}{8}x+3\left(-1\right)y=3\left(-\frac{5}{2}\right),\frac{1}{8}\times 3x+\frac{1}{8}\times \frac{1}{3}y=\frac{1}{8}\times 13
\frac{x}{8} এবং 3x সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 3 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে \frac{1}{8} দিয়ে গুণ করুন।
\frac{3}{8}x-3y=-\frac{15}{2},\frac{3}{8}x+\frac{1}{24}y=\frac{13}{8}
সিমপ্লিফাই।
\frac{3}{8}x-\frac{3}{8}x-3y-\frac{1}{24}y=-\frac{15}{2}-\frac{13}{8}
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে \frac{3}{8}x-3y=-\frac{15}{2} থেকে \frac{3}{8}x+\frac{1}{24}y=\frac{13}{8} বাদ দিন।
-3y-\frac{1}{24}y=-\frac{15}{2}-\frac{13}{8}
-\frac{3x}{8} এ \frac{3x}{8} যোগ করুন। টার্ম \frac{3x}{8} এবং -\frac{3x}{8} বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
-\frac{73}{24}y=-\frac{15}{2}-\frac{13}{8}
-\frac{y}{24} এ -3y যোগ করুন।
-\frac{73}{24}y=-\frac{73}{8}
কমন হর খুঁজে এবং লব যোগ করার মাধ্যমে -\frac{13}{8} এ -\frac{15}{2} যোগ করুন। তারপর সম্ভব হলে ভগ্নাংশটিকে ছোট টার্মে হ্রাস করুন।
y=3
-\frac{73}{24} দিয়ে সমীকরণের উভয় দিককে ভাগ করুন, যা বিপরীত ভগ্নাংশ দ্বারা উভয় দিককে গুণ করার মতো একই।
3x+\frac{1}{3}\times 3=13
3x+\frac{1}{3}y=13 এ y এর জন্য পরিবর্ত হিসাবে 3 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
3x+1=13
\frac{1}{3} কে 3 বার গুণ করুন।
3x=12
সমীকরণের উভয় দিক থেকে 1 বাদ দিন।
x=4
3 দিয়ে উভয় দিককে ভাগ করুন।
x=4,y=3
সিস্টেম এখন সমাধান করা হয়েছে।
উদাহরণ
দ্বিঘাত সমীকরণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্রিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
রৈখিক সমীকরণ
y = 3x + 4
পাটিগণিত
699 * 533
মেট্রিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকরণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ডিফারেন্সিয়েশন
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইন্টিগ্রেশন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
লিমিট
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}