মূল বিষয়বস্তুতে এড়িয়ে যান
x, y এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

x+y=50,10x+20y=500
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
x+y=50
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
x=-y+50
সমীকরণের উভয় দিক থেকে y বাদ দিন।
10\left(-y+50\right)+20y=500
অন্য সমীকরণ 10x+20y=500 এ x এর জন্য -y+50 বিপরীত করু ন।
-10y+500+20y=500
10 কে -y+50 বার গুণ করুন।
10y+500=500
20y এ -10y যোগ করুন।
10y=0
সমীকরণের উভয় দিক থেকে 500 বাদ দিন।
y=0
10 দিয়ে উভয় দিককে ভাগ করুন।
x=50
x=-y+50 এ y এর জন্য পরিবর্ত হিসাবে 0 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=50,y=0
সিস্টেম এখন সমাধান করা হয়েছে।
x+y=50,10x+20y=500
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}1&1\\10&20\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}50\\500\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}1&1\\10&20\end{matrix}\right))\left(\begin{matrix}1&1\\10&20\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\10&20\end{matrix}\right))\left(\begin{matrix}50\\500\end{matrix}\right)
\left(\begin{matrix}1&1\\10&20\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\10&20\end{matrix}\right))\left(\begin{matrix}50\\500\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\10&20\end{matrix}\right))\left(\begin{matrix}50\\500\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{20}{20-10}&-\frac{1}{20-10}\\-\frac{10}{20-10}&\frac{1}{20-10}\end{matrix}\right)\left(\begin{matrix}50\\500\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2&-\frac{1}{10}\\-1&\frac{1}{10}\end{matrix}\right)\left(\begin{matrix}50\\500\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\times 50-\frac{1}{10}\times 500\\-50+\frac{1}{10}\times 500\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}50\\0\end{matrix}\right)
পাটিগণিত করুন।
x=50,y=0
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
x+y=50,10x+20y=500
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
10x+10y=10\times 50,10x+20y=500
x এবং 10x সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 10 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 1 দিয়ে গুণ করুন।
10x+10y=500,10x+20y=500
সিমপ্লিফাই।
10x-10x+10y-20y=500-500
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে 10x+10y=500 থেকে 10x+20y=500 বাদ দিন।
10y-20y=500-500
-10x এ 10x যোগ করুন। টার্ম 10x এবং -10x বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
-10y=500-500
-20y এ 10y যোগ করুন।
-10y=0
-500 এ 500 যোগ করুন।
y=0
-10 দিয়ে উভয় দিককে ভাগ করুন।
10x=500
10x+20y=500 এ y এর জন্য পরিবর্ত হিসাবে 0 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=50
10 দিয়ে উভয় দিককে ভাগ করুন।
x=50,y=0
সিস্টেম এখন সমাধান করা হয়েছে।