মূল বিষয়বস্তুতে এড়িয়ে যান
x, y এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

x+3y=9,x+y=5
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
x+3y=9
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
x=-3y+9
সমীকরণের উভয় দিক থেকে 3y বাদ দিন।
-3y+9+y=5
অন্য সমীকরণ x+y=5 এ x এর জন্য -3y+9 বিপরীত করু ন।
-2y+9=5
y এ -3y যোগ করুন।
-2y=-4
সমীকরণের উভয় দিক থেকে 9 বাদ দিন।
y=2
-2 দিয়ে উভয় দিককে ভাগ করুন।
x=-3\times 2+9
x=-3y+9 এ y এর জন্য পরিবর্ত হিসাবে 2 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=-6+9
-3 কে 2 বার গুণ করুন।
x=3
-6 এ 9 যোগ করুন।
x=3,y=2
সিস্টেম এখন সমাধান করা হয়েছে।
x+3y=9,x+y=5
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}1&3\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\5\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}1&3\\1&1\end{matrix}\right))\left(\begin{matrix}1&3\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\1&1\end{matrix}\right))\left(\begin{matrix}9\\5\end{matrix}\right)
\left(\begin{matrix}1&3\\1&1\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\1&1\end{matrix}\right))\left(\begin{matrix}9\\5\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\1&1\end{matrix}\right))\left(\begin{matrix}9\\5\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-3}&-\frac{3}{1-3}\\-\frac{1}{1-3}&\frac{1}{1-3}\end{matrix}\right)\left(\begin{matrix}9\\5\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}&\frac{3}{2}\\\frac{1}{2}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}9\\5\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\times 9+\frac{3}{2}\times 5\\\frac{1}{2}\times 9-\frac{1}{2}\times 5\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\2\end{matrix}\right)
পাটিগণিত করুন।
x=3,y=2
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
x+3y=9,x+y=5
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
x-x+3y-y=9-5
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে x+3y=9 থেকে x+y=5 বাদ দিন।
3y-y=9-5
-x এ x যোগ করুন। টার্ম x এবং -x বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
2y=9-5
-y এ 3y যোগ করুন।
2y=4
-5 এ 9 যোগ করুন।
y=2
2 দিয়ে উভয় দিককে ভাগ করুন।
x+2=5
x+y=5 এ y এর জন্য পরিবর্ত হিসাবে 2 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=3
সমীকরণের উভয় দিক থেকে 2 বাদ দিন।
x=3,y=2
সিস্টেম এখন সমাধান করা হয়েছে।