\left\{ \begin{array} { l } { 6 x - 18 y = - 85 } \\ { 24 x - 5 y = - 5 } \end{array} \right.
x, y এর জন্য সমাধান করুন
x=\frac{5}{6}\approx 0.833333333
y=5
গ্রাফ
শেয়ার করুন
ক্লিপবোর্ডে কপি করা হয়েছে
6x-18y=-85,24x-5y=-5
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
6x-18y=-85
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
6x=18y-85
সমীকরণের উভয় দিকে 18y যোগ করুন।
x=\frac{1}{6}\left(18y-85\right)
6 দিয়ে উভয় দিককে ভাগ করুন।
x=3y-\frac{85}{6}
\frac{1}{6} কে 18y-85 বার গুণ করুন।
24\left(3y-\frac{85}{6}\right)-5y=-5
অন্য সমীকরণ 24x-5y=-5 এ x এর জন্য 3y-\frac{85}{6} বিপরীত করু ন।
72y-340-5y=-5
24 কে 3y-\frac{85}{6} বার গুণ করুন।
67y-340=-5
-5y এ 72y যোগ করুন।
67y=335
সমীকরণের উভয় দিকে 340 যোগ করুন।
y=5
67 দিয়ে উভয় দিককে ভাগ করুন।
x=3\times 5-\frac{85}{6}
x=3y-\frac{85}{6} এ y এর জন্য পরিবর্ত হিসাবে 5 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=15-\frac{85}{6}
3 কে 5 বার গুণ করুন।
x=\frac{5}{6}
15 এ -\frac{85}{6} যোগ করুন।
x=\frac{5}{6},y=5
সিস্টেম এখন সমাধান করা হয়েছে।
6x-18y=-85,24x-5y=-5
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}6&-18\\24&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-85\\-5\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}6&-18\\24&-5\end{matrix}\right))\left(\begin{matrix}6&-18\\24&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-18\\24&-5\end{matrix}\right))\left(\begin{matrix}-85\\-5\end{matrix}\right)
\left(\begin{matrix}6&-18\\24&-5\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-18\\24&-5\end{matrix}\right))\left(\begin{matrix}-85\\-5\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-18\\24&-5\end{matrix}\right))\left(\begin{matrix}-85\\-5\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{6\left(-5\right)-\left(-18\times 24\right)}&-\frac{-18}{6\left(-5\right)-\left(-18\times 24\right)}\\-\frac{24}{6\left(-5\right)-\left(-18\times 24\right)}&\frac{6}{6\left(-5\right)-\left(-18\times 24\right)}\end{matrix}\right)\left(\begin{matrix}-85\\-5\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{402}&\frac{3}{67}\\-\frac{4}{67}&\frac{1}{67}\end{matrix}\right)\left(\begin{matrix}-85\\-5\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{402}\left(-85\right)+\frac{3}{67}\left(-5\right)\\-\frac{4}{67}\left(-85\right)+\frac{1}{67}\left(-5\right)\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{6}\\5\end{matrix}\right)
পাটিগণিত করুন।
x=\frac{5}{6},y=5
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
6x-18y=-85,24x-5y=-5
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
24\times 6x+24\left(-18\right)y=24\left(-85\right),6\times 24x+6\left(-5\right)y=6\left(-5\right)
6x এবং 24x সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 24 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 6 দিয়ে গুণ করুন।
144x-432y=-2040,144x-30y=-30
সিমপ্লিফাই।
144x-144x-432y+30y=-2040+30
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে 144x-432y=-2040 থেকে 144x-30y=-30 বাদ দিন।
-432y+30y=-2040+30
-144x এ 144x যোগ করুন। টার্ম 144x এবং -144x বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
-402y=-2040+30
30y এ -432y যোগ করুন।
-402y=-2010
30 এ -2040 যোগ করুন।
y=5
-402 দিয়ে উভয় দিককে ভাগ করুন।
24x-5\times 5=-5
24x-5y=-5 এ y এর জন্য পরিবর্ত হিসাবে 5 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
24x-25=-5
-5 কে 5 বার গুণ করুন।
24x=20
সমীকরণের উভয় দিকে 25 যোগ করুন।
x=\frac{5}{6}
24 দিয়ে উভয় দিককে ভাগ করুন।
x=\frac{5}{6},y=5
সিস্টেম এখন সমাধান করা হয়েছে।
উদাহরণ
দ্বিঘাত সমীকরণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্রিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
রৈখিক সমীকরণ
y = 3x + 4
পাটিগণিত
699 * 533
মেট্রিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকরণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ডিফারেন্সিয়েশন
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইন্টিগ্রেশন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
লিমিট
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}