\left\{ \begin{array} { l } { 3 x + y = 5 } \\ { \frac { x + 2 } { 5 } + \frac { y } { 2 } = - 1 } \end{array} \right.
x, y এর জন্য সমাধান করুন
x=3
y=-4
গ্রাফ
শেয়ার করুন
ক্লিপবোর্ডে কপি করা হয়েছে
3x+y=5,\frac{1}{5}\left(x+2\right)+\frac{1}{2}y=-1
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
3x+y=5
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
3x=-y+5
সমীকরণের উভয় দিক থেকে y বাদ দিন।
x=\frac{1}{3}\left(-y+5\right)
3 দিয়ে উভয় দিককে ভাগ করুন।
x=-\frac{1}{3}y+\frac{5}{3}
\frac{1}{3} কে -y+5 বার গুণ করুন।
\frac{1}{5}\left(-\frac{1}{3}y+\frac{5}{3}+2\right)+\frac{1}{2}y=-1
অন্য সমীকরণ \frac{1}{5}\left(x+2\right)+\frac{1}{2}y=-1 এ x এর জন্য \frac{-y+5}{3} বিপরীত করু ন।
\frac{1}{5}\left(-\frac{1}{3}y+\frac{11}{3}\right)+\frac{1}{2}y=-1
2 এ \frac{5}{3} যোগ করুন।
-\frac{1}{15}y+\frac{11}{15}+\frac{1}{2}y=-1
\frac{1}{5} কে \frac{-y+11}{3} বার গুণ করুন।
\frac{13}{30}y+\frac{11}{15}=-1
\frac{y}{2} এ -\frac{y}{15} যোগ করুন।
\frac{13}{30}y=-\frac{26}{15}
সমীকরণের উভয় দিক থেকে \frac{11}{15} বাদ দিন।
y=-4
\frac{13}{30} দিয়ে সমীকরণের উভয় দিককে ভাগ করুন, যা বিপরীত ভগ্নাংশ দ্বারা উভয় দিককে গুণ করার মতো একই।
x=-\frac{1}{3}\left(-4\right)+\frac{5}{3}
x=-\frac{1}{3}y+\frac{5}{3} এ y এর জন্য পরিবর্ত হিসাবে -4 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=\frac{4+5}{3}
-\frac{1}{3} কে -4 বার গুণ করুন।
x=3
কমন হর খুঁজে এবং লব যোগ করার মাধ্যমে \frac{4}{3} এ \frac{5}{3} যোগ করুন। তারপর সম্ভব হলে ভগ্নাংশটিকে ছোট টার্মে হ্রাস করুন।
x=3,y=-4
সিস্টেম এখন সমাধান করা হয়েছে।
3x+y=5,\frac{1}{5}\left(x+2\right)+\frac{1}{2}y=-1
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\frac{1}{5}\left(x+2\right)+\frac{1}{2}y=-1
দ্বিতীয় সমীকরণটিকে আদর্শ রূপে পরিণত করতে প্রথমে সেটিকে সরলীকরণ করুন।
\frac{1}{5}x+\frac{2}{5}+\frac{1}{2}y=-1
\frac{1}{5} কে x+2 বার গুণ করুন।
\frac{1}{5}x+\frac{1}{2}y=-\frac{7}{5}
সমীকরণের উভয় দিক থেকে \frac{2}{5} বাদ দিন।
\left(\begin{matrix}3&1\\\frac{1}{5}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\-\frac{7}{5}\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}3&1\\\frac{1}{5}&\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}3&1\\\frac{1}{5}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\\frac{1}{5}&\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}5\\-\frac{7}{5}\end{matrix}\right)
\left(\begin{matrix}3&1\\\frac{1}{5}&\frac{1}{2}\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\\frac{1}{5}&\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}5\\-\frac{7}{5}\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\\frac{1}{5}&\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}5\\-\frac{7}{5}\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{\frac{1}{2}}{3\times \frac{1}{2}-\frac{1}{5}}&-\frac{1}{3\times \frac{1}{2}-\frac{1}{5}}\\-\frac{\frac{1}{5}}{3\times \frac{1}{2}-\frac{1}{5}}&\frac{3}{3\times \frac{1}{2}-\frac{1}{5}}\end{matrix}\right)\left(\begin{matrix}5\\-\frac{7}{5}\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{13}&-\frac{10}{13}\\-\frac{2}{13}&\frac{30}{13}\end{matrix}\right)\left(\begin{matrix}5\\-\frac{7}{5}\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{13}\times 5-\frac{10}{13}\left(-\frac{7}{5}\right)\\-\frac{2}{13}\times 5+\frac{30}{13}\left(-\frac{7}{5}\right)\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-4\end{matrix}\right)
পাটিগণিত করুন।
x=3,y=-4
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
উদাহরণ
দ্বিঘাত সমীকরণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্রিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
রৈখিক সমীকরণ
y = 3x + 4
পাটিগণিত
699 * 533
মেট্রিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকরণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ডিফারেন্সিয়েশন
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইন্টিগ্রেশন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
লিমিট
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}