মূল বিষয়বস্তুতে এড়িয়ে যান
মূল্যায়ন করুন
Tick mark Image

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

\int x^{2}-7x+9\mathrm{d}x
Evaluate the indefinite integral first.
\int x^{2}\mathrm{d}x+\int -7x\mathrm{d}x+\int 9\mathrm{d}x
Integrate the sum term by term.
\int x^{2}\mathrm{d}x-7\int x\mathrm{d}x+\int 9\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{3}}{3}-7\int x\mathrm{d}x+\int 9\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}.
\frac{x^{3}}{3}-\frac{7x^{2}}{2}+\int 9\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. -7 কে \frac{x^{2}}{2} বার গুণ করুন।
\frac{x^{3}}{3}-\frac{7x^{2}}{2}+9x
Find the integral of 9 using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{100^{3}}{3}-\frac{7}{2}\times 100^{2}+9\times 100-\left(\frac{0^{3}}{3}-\frac{7}{2}\times 0^{2}+9\times 0\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{897700}{3}
সিমপ্লিফাই।