Премини към основното съдържание
Разлагане на множители
Tick mark Image
Изчисляване
Tick mark Image
Граф

Подобни проблеми от търсенето в мрежата

Дял

a+b=-8 ab=1\times 15=15
Фактор на израза по групи. Първо, изразът трябва да бъде пренаписан като x^{2}+ax+bx+15. За да намерите a и b, настройте система, която да бъде решена.
-1,-15 -3,-5
Тъй като ab е положителна, a и b имат един и същ знак. Тъй като a+b е отрицателен, a и b са отрицателни. Изброяване на всички тези целочислени двойки, които придават 15 на продукта.
-1-15=-16 -3-5=-8
Изчислете сумата за всяка двойка.
a=-5 b=-3
Решението е двойката, която дава сума -8.
\left(x^{2}-5x\right)+\left(-3x+15\right)
Напишете x^{2}-8x+15 като \left(x^{2}-5x\right)+\left(-3x+15\right).
x\left(x-5\right)-3\left(x-5\right)
Фактор, x в първата и -3 във втората група.
\left(x-5\right)\left(x-3\right)
Разложете на множители общия член x-5, като използвате разпределителното свойство.
x^{2}-8x+15=0
Квадратен полином може да се разложи на множители, като се използва трансформацията ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), където x_{1} и x_{2} са решенията на квадратното уравнение ax^{2}+bx+c=0.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 15}}{2}
Всички формули във форма ax^{2}+bx+c=0 може да се решат чрез използване на формулата за корени на квадратното уравнение: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Формулата за корени на квадратното уравнение дава две решения, когато ± е събиране, и едно, когато е изваждане.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 15}}{2}
Повдигане на квадрат на -8.
x=\frac{-\left(-8\right)±\sqrt{64-60}}{2}
Умножете -4 по 15.
x=\frac{-\left(-8\right)±\sqrt{4}}{2}
Съберете 64 с -60.
x=\frac{-\left(-8\right)±2}{2}
Получете корен квадратен от 4.
x=\frac{8±2}{2}
Противоположното на -8 е 8.
x=\frac{10}{2}
Сега решете уравнението x=\frac{8±2}{2}, когато ± е плюс. Съберете 8 с 2.
x=5
Разделете 10 на 2.
x=\frac{6}{2}
Сега решете уравнението x=\frac{8±2}{2}, когато ± е минус. Извадете 2 от 8.
x=3
Разделете 6 на 2.
x^{2}-8x+15=\left(x-5\right)\left(x-3\right)
Разложете на множители първоначалния израз, като използвате ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Заместете x_{1} с 5 и x_{2} с 3.