Премини към основното съдържание
Решаване за x
Tick mark Image
Граф

Подобни проблеми от търсенето в мрежата

Дял

x^{2}-21+4x=0
Добавете 4x от двете страни.
x^{2}+4x-21=0
Преобразувайте полинома в стандартна форма. Поставете членовете в ред от най-висока до най-ниска степен.
a+b=4 ab=-21
За да се реши уравнението, коефициентът x^{2}+4x-21 с помощта на формула x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). За да намерите a и b, настройте система, която да бъде решена.
-1,21 -3,7
Тъй като ab е отрицателен, a и b имат противоположни знаци. Тъй като a+b е положително, положителното число има по-голяма абсолютна стойност от отрицателното. Изброяване на всички тези целочислени двойки, които придават -21 на продукта.
-1+21=20 -3+7=4
Изчислете сумата за всяка двойка.
a=-3 b=7
Решението е двойката, която дава сума 4.
\left(x-3\right)\left(x+7\right)
Пренапишете разложения на множители израз \left(x+a\right)\left(x+b\right) с помощта на получените стойности.
x=3 x=-7
За да намерите решения за уравнение, решете x-3=0 и x+7=0.
x^{2}-21+4x=0
Добавете 4x от двете страни.
x^{2}+4x-21=0
Преобразувайте полинома в стандартна форма. Поставете членовете в ред от най-висока до най-ниска степен.
a+b=4 ab=1\left(-21\right)=-21
За да се реши уравнението, коефициентът е от лявата страна по групи. Първо, лявата страна трябва да бъде пренаписана като x^{2}+ax+bx-21. За да намерите a и b, настройте система, която да бъде решена.
-1,21 -3,7
Тъй като ab е отрицателен, a и b имат противоположни знаци. Тъй като a+b е положително, положителното число има по-голяма абсолютна стойност от отрицателното. Изброяване на всички тези целочислени двойки, които придават -21 на продукта.
-1+21=20 -3+7=4
Изчислете сумата за всяка двойка.
a=-3 b=7
Решението е двойката, която дава сума 4.
\left(x^{2}-3x\right)+\left(7x-21\right)
Напишете x^{2}+4x-21 като \left(x^{2}-3x\right)+\left(7x-21\right).
x\left(x-3\right)+7\left(x-3\right)
Фактор, x в първата и 7 във втората група.
\left(x-3\right)\left(x+7\right)
Разложете на множители общия член x-3, като използвате разпределителното свойство.
x=3 x=-7
За да намерите решения за уравнение, решете x-3=0 и x+7=0.
x^{2}-21+4x=0
Добавете 4x от двете страни.
x^{2}+4x-21=0
Всички формули във форма ax^{2}+bx+c=0 може да се решат чрез използване на формулата за корени на квадратното уравнение: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Формулата за корени на квадратното уравнение дава две решения, когато ± е събиране, и едно, когато е изваждане.
x=\frac{-4±\sqrt{4^{2}-4\left(-21\right)}}{2}
Това уравнение е в стандартна форма: ax^{2}+bx+c=0. Заместете 1 вместо a, 4 вместо b и -21 вместо c във формулата на квадратното уравнение, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\left(-21\right)}}{2}
Повдигане на квадрат на 4.
x=\frac{-4±\sqrt{16+84}}{2}
Умножете -4 по -21.
x=\frac{-4±\sqrt{100}}{2}
Съберете 16 с 84.
x=\frac{-4±10}{2}
Получете корен квадратен от 100.
x=\frac{6}{2}
Сега решете уравнението x=\frac{-4±10}{2}, когато ± е плюс. Съберете -4 с 10.
x=3
Разделете 6 на 2.
x=-\frac{14}{2}
Сега решете уравнението x=\frac{-4±10}{2}, когато ± е минус. Извадете 10 от -4.
x=-7
Разделете -14 на 2.
x=3 x=-7
Уравнението сега е решено.
x^{2}-21+4x=0
Добавете 4x от двете страни.
x^{2}+4x=21
Добавете 21 от двете страни. Нещо плюс нула дава същото нещо.
x^{2}+4x+2^{2}=21+2^{2}
Разделете 4 – коефициента на члена на x – на 2, за да получите 2. След това съберете квадрата на 2 с двете страни на уравнението. С тази стъпка лявата страна на уравнението става точен квадрат.
x^{2}+4x+4=21+4
Повдигане на квадрат на 2.
x^{2}+4x+4=25
Съберете 21 с 4.
\left(x+2\right)^{2}=25
Разложете на множител x^{2}+4x+4. Като цяло, когато x^{2}+bx+c е точен квадрат, той винаги може да бъде разложен на множител като \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{25}
Получете корен квадратен от двете страни на равенството.
x+2=5 x+2=-5
Опростявайте.
x=3 x=-7
Извадете 2 и от двете страни на уравнението.