Разлагане на множители
\left(x-6\right)\left(x-4\right)
Изчисляване
\left(x-6\right)\left(x-4\right)
Граф
Дял
Копирано в клипборда
a+b=-10 ab=1\times 24=24
Фактор на израза по групи. Първо, изразът трябва да бъде пренаписан като x^{2}+ax+bx+24. За да намерите a и b, настройте система, която да бъде решена.
-1,-24 -2,-12 -3,-8 -4,-6
Тъй като ab е положителна, a и b имат един и същ знак. Тъй като a+b е отрицателен, a и b са отрицателни. Изброяване на всички тези целочислени двойки, които придават 24 на продукта.
-1-24=-25 -2-12=-14 -3-8=-11 -4-6=-10
Изчислете сумата за всяка двойка.
a=-6 b=-4
Решението е двойката, която дава сума -10.
\left(x^{2}-6x\right)+\left(-4x+24\right)
Напишете x^{2}-10x+24 като \left(x^{2}-6x\right)+\left(-4x+24\right).
x\left(x-6\right)-4\left(x-6\right)
Фактор, x в първата и -4 във втората група.
\left(x-6\right)\left(x-4\right)
Разложете на множители общия член x-6, като използвате разпределителното свойство.
x^{2}-10x+24=0
Квадратен полином може да се разложи на множители, като се използва трансформацията ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), където x_{1} и x_{2} са решенията на квадратното уравнение ax^{2}+bx+c=0.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 24}}{2}
Всички формули във форма ax^{2}+bx+c=0 може да се решат чрез използване на формулата за корени на квадратното уравнение: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Формулата за корени на квадратното уравнение дава две решения, когато ± е събиране, и едно, когато е изваждане.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 24}}{2}
Повдигане на квадрат на -10.
x=\frac{-\left(-10\right)±\sqrt{100-96}}{2}
Умножете -4 по 24.
x=\frac{-\left(-10\right)±\sqrt{4}}{2}
Съберете 100 с -96.
x=\frac{-\left(-10\right)±2}{2}
Получете корен квадратен от 4.
x=\frac{10±2}{2}
Противоположното на -10 е 10.
x=\frac{12}{2}
Сега решете уравнението x=\frac{10±2}{2}, когато ± е плюс. Съберете 10 с 2.
x=6
Разделете 12 на 2.
x=\frac{8}{2}
Сега решете уравнението x=\frac{10±2}{2}, когато ± е минус. Извадете 2 от 10.
x=4
Разделете 8 на 2.
x^{2}-10x+24=\left(x-6\right)\left(x-4\right)
Разложете на множители първоначалния израз, като използвате ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Заместете x_{1} с 6 и x_{2} с 4.
Примери
Квадратно уравнение
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Линейно уравнение
y = 3x + 4
Аритметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Едновременно уравнение
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграционен
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Граници
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}