Премини към основното съдържание
Решаване за x_2
Tick mark Image
Граф

Дял

x ^ {2} = 9 + {(17 - x 2 \sqrt{x})} \cdot {({(7 - x - 2 \sqrt{x})} - 6 \cdot 0,15643446504023092)}
Evaluate trigonometric functions in the problem
x^{2}=9+\left(17-x_{2}\sqrt{x}\right)\left(7-x-2\sqrt{x}-0,93860679024138552\right)
Умножете 6 по 0,15643446504023092, за да получите 0,93860679024138552.
x^{2}=9+\left(17-x_{2}\sqrt{x}\right)\left(7-x-2\sqrt{x}\right)-0,93860679024138552\left(17-x_{2}\sqrt{x}\right)
Използвайте дистрибутивното свойство, за да умножите 17-x_{2}\sqrt{x} по 7-x-2\sqrt{x}-0,93860679024138552.
9+\left(17-x_{2}\sqrt{x}\right)\left(7-x-2\sqrt{x}\right)-0,93860679024138552\left(17-x_{2}\sqrt{x}\right)=x^{2}
Разменете страните, така че всички променливи членове да са от лявата страна.
\left(17-x_{2}\sqrt{x}\right)\left(7-x-2\sqrt{x}\right)-0,93860679024138552\left(17-x_{2}\sqrt{x}\right)=x^{2}-9
Извадете 9 и от двете страни.
119-17x-34\sqrt{x}-7x_{2}\sqrt{x}+xx_{2}\sqrt{x}+2x_{2}\left(\sqrt{x}\right)^{2}-0,93860679024138552\left(17-x_{2}\sqrt{x}\right)=x^{2}-9
Използвайте дистрибутивното свойство, за да умножите 17-x_{2}\sqrt{x} по 7-x-2\sqrt{x}.
119-17x-34\sqrt{x}-7x_{2}\sqrt{x}+xx_{2}\sqrt{x}+2x_{2}x-0,93860679024138552\left(17-x_{2}\sqrt{x}\right)=x^{2}-9
Изчислявате 2 на степен \sqrt{x} и получавате x.
119-17x-34\sqrt{x}-7x_{2}\sqrt{x}+xx_{2}\sqrt{x}+2x_{2}x-15,95631543410355384+0,93860679024138552x_{2}\sqrt{x}=x^{2}-9
Използвайте дистрибутивното свойство, за да умножите -0,93860679024138552 по 17-x_{2}\sqrt{x}.
103,04368456589644616-17x-34\sqrt{x}-7x_{2}\sqrt{x}+xx_{2}\sqrt{x}+2x_{2}x+0,93860679024138552x_{2}\sqrt{x}=x^{2}-9
Извадете 15,95631543410355384 от 119, за да получите 103,04368456589644616.
103,04368456589644616-17x-34\sqrt{x}-6,06139320975861448x_{2}\sqrt{x}+xx_{2}\sqrt{x}+2x_{2}x=x^{2}-9
Групирайте -7x_{2}\sqrt{x} и 0,93860679024138552x_{2}\sqrt{x}, за да получите -6,06139320975861448x_{2}\sqrt{x}.
-17x-34\sqrt{x}-6,06139320975861448x_{2}\sqrt{x}+xx_{2}\sqrt{x}+2x_{2}x=x^{2}-9-103,04368456589644616
Извадете 103,04368456589644616 и от двете страни.
-17x-34\sqrt{x}-6,06139320975861448x_{2}\sqrt{x}+xx_{2}\sqrt{x}+2x_{2}x=x^{2}-112,04368456589644616
Извадете 103,04368456589644616 от -9, за да получите -112,04368456589644616.
-34\sqrt{x}-6,06139320975861448x_{2}\sqrt{x}+xx_{2}\sqrt{x}+2x_{2}x=x^{2}-112,04368456589644616+17x
Добавете 17x от двете страни.
-6,06139320975861448x_{2}\sqrt{x}+xx_{2}\sqrt{x}+2x_{2}x=x^{2}-112,04368456589644616+17x+34\sqrt{x}
Добавете 34\sqrt{x} от двете страни.
\left(-6,06139320975861448\sqrt{x}+x\sqrt{x}+2x\right)x_{2}=x^{2}-112,04368456589644616+17x+34\sqrt{x}
Групирайте всички членове, съдържащи x_{2}.
\left(\sqrt{x}x+2x-\frac{75767415121982681\sqrt{x}}{12500000000000000}\right)x_{2}=x^{2}+17x+34\sqrt{x}-112,04368456589644616
Уравнението е в стандартна форма.
\frac{\left(\sqrt{x}x+2x-\frac{75767415121982681\sqrt{x}}{12500000000000000}\right)x_{2}}{\sqrt{x}x+2x-\frac{75767415121982681\sqrt{x}}{12500000000000000}}=\frac{x^{2}+17x+34\sqrt{x}-112,04368456589644616}{\sqrt{x}x+2x-\frac{75767415121982681\sqrt{x}}{12500000000000000}}
Разделете двете страни на -6,06139320975861448\sqrt{x}+x\sqrt{x}+2x.
x_{2}=\frac{x^{2}+17x+34\sqrt{x}-112,04368456589644616}{\sqrt{x}x+2x-\frac{75767415121982681\sqrt{x}}{12500000000000000}}
Делението на -6,06139320975861448\sqrt{x}+x\sqrt{x}+2x отменя умножението по -6,06139320975861448\sqrt{x}+x\sqrt{x}+2x.
x_{2}=\frac{x^{2}+17x+34\sqrt{x}-112,04368456589644616}{\sqrt{x}\left(x+2\sqrt{x}-6,06139320975861448\right)}
Разделете x^{2}-112,04368456589644616+17x+34\sqrt{x} на -6,06139320975861448\sqrt{x}+x\sqrt{x}+2x.