Решаване за x
x=-6
x=8
Граф
Дял
Копирано в клипборда
x^{2}-2x=48
Извадете 2x и от двете страни.
x^{2}-2x-48=0
Извадете 48 и от двете страни.
a+b=-2 ab=-48
За да се реши уравнението, коефициентът x^{2}-2x-48 с помощта на формула x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). За да намерите a и b, настройте система, която да бъде решена.
1,-48 2,-24 3,-16 4,-12 6,-8
Тъй като ab е отрицателен, a и b имат противоположни знаци. Тъй като a+b е отрицателно, отрицателното число има по-голяма абсолютна стойност от положителното. Изброяване на всички тези целочислени двойки, които придават -48 на продукта.
1-48=-47 2-24=-22 3-16=-13 4-12=-8 6-8=-2
Изчислете сумата за всяка двойка.
a=-8 b=6
Решението е двойката, която дава сума -2.
\left(x-8\right)\left(x+6\right)
Пренапишете разложения на множители израз \left(x+a\right)\left(x+b\right) с помощта на получените стойности.
x=8 x=-6
За да намерите решения за уравнение, решете x-8=0 и x+6=0.
x^{2}-2x=48
Извадете 2x и от двете страни.
x^{2}-2x-48=0
Извадете 48 и от двете страни.
a+b=-2 ab=1\left(-48\right)=-48
За да се реши уравнението, коефициентът е от лявата страна по групи. Първо, лявата страна трябва да бъде пренаписана като x^{2}+ax+bx-48. За да намерите a и b, настройте система, която да бъде решена.
1,-48 2,-24 3,-16 4,-12 6,-8
Тъй като ab е отрицателен, a и b имат противоположни знаци. Тъй като a+b е отрицателно, отрицателното число има по-голяма абсолютна стойност от положителното. Изброяване на всички тези целочислени двойки, които придават -48 на продукта.
1-48=-47 2-24=-22 3-16=-13 4-12=-8 6-8=-2
Изчислете сумата за всяка двойка.
a=-8 b=6
Решението е двойката, която дава сума -2.
\left(x^{2}-8x\right)+\left(6x-48\right)
Напишете x^{2}-2x-48 като \left(x^{2}-8x\right)+\left(6x-48\right).
x\left(x-8\right)+6\left(x-8\right)
Фактор, x в първата и 6 във втората група.
\left(x-8\right)\left(x+6\right)
Разложете на множители общия член x-8, като използвате разпределителното свойство.
x=8 x=-6
За да намерите решения за уравнение, решете x-8=0 и x+6=0.
x^{2}-2x=48
Извадете 2x и от двете страни.
x^{2}-2x-48=0
Извадете 48 и от двете страни.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-48\right)}}{2}
Това уравнение е в стандартна форма: ax^{2}+bx+c=0. Заместете 1 вместо a, -2 вместо b и -48 вместо c във формулата на квадратното уравнение, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-48\right)}}{2}
Повдигане на квадрат на -2.
x=\frac{-\left(-2\right)±\sqrt{4+192}}{2}
Умножете -4 по -48.
x=\frac{-\left(-2\right)±\sqrt{196}}{2}
Съберете 4 с 192.
x=\frac{-\left(-2\right)±14}{2}
Получете корен квадратен от 196.
x=\frac{2±14}{2}
Противоположното на -2 е 2.
x=\frac{16}{2}
Сега решете уравнението x=\frac{2±14}{2}, когато ± е плюс. Съберете 2 с 14.
x=8
Разделете 16 на 2.
x=-\frac{12}{2}
Сега решете уравнението x=\frac{2±14}{2}, когато ± е минус. Извадете 14 от 2.
x=-6
Разделете -12 на 2.
x=8 x=-6
Уравнението сега е решено.
x^{2}-2x=48
Извадете 2x и от двете страни.
x^{2}-2x+1=48+1
Разделете -2 – коефициента на члена на x – на 2, за да получите -1. След това съберете квадрата на -1 с двете страни на уравнението. С тази стъпка лявата страна на уравнението става точен квадрат.
x^{2}-2x+1=49
Съберете 48 с 1.
\left(x-1\right)^{2}=49
Разложете на множител x^{2}-2x+1. Като цяло, когато x^{2}+bx+c е точен квадрат, той винаги може да бъде разложен на множител като \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{49}
Получете корен квадратен от двете страни на равенството.
x-1=7 x-1=-7
Опростявайте.
x=8 x=-6
Съберете 1 към двете страни на уравнението.
Примери
Квадратно уравнение
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Линейно уравнение
y = 3x + 4
Аритметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Едновременно уравнение
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграционен
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Граници
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}