Премини към основното съдържание
Решаване за x
Tick mark Image
Граф

Подобни проблеми от търсенето в мрежата

Дял

x^{2}+x-48-3x=0
Извадете 3x и от двете страни.
x^{2}-2x-48=0
Групирайте x и -3x, за да получите -2x.
a+b=-2 ab=-48
За да се реши уравнението, коефициентът x^{2}-2x-48 с помощта на формула x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). За да намерите a и b, настройте система, която да бъде решена.
1,-48 2,-24 3,-16 4,-12 6,-8
Тъй като ab е отрицателен, a и b имат противоположни знаци. Тъй като a+b е отрицателно, отрицателното число има по-голяма абсолютна стойност от положителното. Изброяване на всички тези целочислени двойки, които придават -48 на продукта.
1-48=-47 2-24=-22 3-16=-13 4-12=-8 6-8=-2
Изчислете сумата за всяка двойка.
a=-8 b=6
Решението е двойката, която дава сума -2.
\left(x-8\right)\left(x+6\right)
Пренапишете разложения на множители израз \left(x+a\right)\left(x+b\right) с помощта на получените стойности.
x=8 x=-6
За да намерите решения за уравнение, решете x-8=0 и x+6=0.
x^{2}+x-48-3x=0
Извадете 3x и от двете страни.
x^{2}-2x-48=0
Групирайте x и -3x, за да получите -2x.
a+b=-2 ab=1\left(-48\right)=-48
За да се реши уравнението, коефициентът е от лявата страна по групи. Първо, лявата страна трябва да бъде пренаписана като x^{2}+ax+bx-48. За да намерите a и b, настройте система, която да бъде решена.
1,-48 2,-24 3,-16 4,-12 6,-8
Тъй като ab е отрицателен, a и b имат противоположни знаци. Тъй като a+b е отрицателно, отрицателното число има по-голяма абсолютна стойност от положителното. Изброяване на всички тези целочислени двойки, които придават -48 на продукта.
1-48=-47 2-24=-22 3-16=-13 4-12=-8 6-8=-2
Изчислете сумата за всяка двойка.
a=-8 b=6
Решението е двойката, която дава сума -2.
\left(x^{2}-8x\right)+\left(6x-48\right)
Напишете x^{2}-2x-48 като \left(x^{2}-8x\right)+\left(6x-48\right).
x\left(x-8\right)+6\left(x-8\right)
Фактор, x в първата и 6 във втората група.
\left(x-8\right)\left(x+6\right)
Разложете на множители общия член x-8, като използвате разпределителното свойство.
x=8 x=-6
За да намерите решения за уравнение, решете x-8=0 и x+6=0.
x^{2}+x-48-3x=0
Извадете 3x и от двете страни.
x^{2}-2x-48=0
Групирайте x и -3x, за да получите -2x.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-48\right)}}{2}
Това уравнение е в стандартна форма: ax^{2}+bx+c=0. Заместете 1 вместо a, -2 вместо b и -48 вместо c във формулата на квадратното уравнение, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-48\right)}}{2}
Повдигане на квадрат на -2.
x=\frac{-\left(-2\right)±\sqrt{4+192}}{2}
Умножете -4 по -48.
x=\frac{-\left(-2\right)±\sqrt{196}}{2}
Съберете 4 с 192.
x=\frac{-\left(-2\right)±14}{2}
Получете корен квадратен от 196.
x=\frac{2±14}{2}
Противоположното на -2 е 2.
x=\frac{16}{2}
Сега решете уравнението x=\frac{2±14}{2}, когато ± е плюс. Съберете 2 с 14.
x=8
Разделете 16 на 2.
x=-\frac{12}{2}
Сега решете уравнението x=\frac{2±14}{2}, когато ± е минус. Извадете 14 от 2.
x=-6
Разделете -12 на 2.
x=8 x=-6
Уравнението сега е решено.
x^{2}+x-48-3x=0
Извадете 3x и от двете страни.
x^{2}-2x-48=0
Групирайте x и -3x, за да получите -2x.
x^{2}-2x=48
Добавете 48 от двете страни. Нещо плюс нула дава същото нещо.
x^{2}-2x+1=48+1
Разделете -2 – коефициента на члена на x – на 2, за да получите -1. След това съберете квадрата на -1 с двете страни на уравнението. С тази стъпка лявата страна на уравнението става точен квадрат.
x^{2}-2x+1=49
Съберете 48 с 1.
\left(x-1\right)^{2}=49
Разложете на множител x^{2}-2x+1. Като цяло, когато x^{2}+bx+c е точен квадрат, той винаги може да бъде разложен на множител като \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{49}
Получете корен квадратен от двете страни на равенството.
x-1=7 x-1=-7
Опростявайте.
x=8 x=-6
Съберете 1 към двете страни на уравнението.