Премини към основното съдържание
Разлагане на множители
Tick mark Image
Изчисляване
Tick mark Image
Граф

Подобни проблеми от търсенето в мрежата

Дял

a+b=7 ab=1\left(-30\right)=-30
Фактор на израза по групи. Първо, изразът трябва да бъде пренаписан като x^{2}+ax+bx-30. За да намерите a и b, настройте система, която да бъде решена.
-1,30 -2,15 -3,10 -5,6
Тъй като ab е отрицателен, a и b имат противоположни знаци. Тъй като a+b е положително, положителното число има по-голяма абсолютна стойност от отрицателното. Изброяване на всички тези целочислени двойки, които придават -30 на продукта.
-1+30=29 -2+15=13 -3+10=7 -5+6=1
Изчислете сумата за всяка двойка.
a=-3 b=10
Решението е двойката, която дава сума 7.
\left(x^{2}-3x\right)+\left(10x-30\right)
Напишете x^{2}+7x-30 като \left(x^{2}-3x\right)+\left(10x-30\right).
x\left(x-3\right)+10\left(x-3\right)
Фактор, x в първата и 10 във втората група.
\left(x-3\right)\left(x+10\right)
Разложете на множители общия член x-3, като използвате разпределителното свойство.
x^{2}+7x-30=0
Квадратен полином може да се разложи на множители, като се използва трансформацията ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), където x_{1} и x_{2} са решенията на квадратното уравнение ax^{2}+bx+c=0.
x=\frac{-7±\sqrt{7^{2}-4\left(-30\right)}}{2}
Всички формули във форма ax^{2}+bx+c=0 може да се решат чрез използване на формулата за корени на квадратното уравнение: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Формулата за корени на квадратното уравнение дава две решения, когато ± е събиране, и едно, когато е изваждане.
x=\frac{-7±\sqrt{49-4\left(-30\right)}}{2}
Повдигане на квадрат на 7.
x=\frac{-7±\sqrt{49+120}}{2}
Умножете -4 по -30.
x=\frac{-7±\sqrt{169}}{2}
Съберете 49 с 120.
x=\frac{-7±13}{2}
Получете корен квадратен от 169.
x=\frac{6}{2}
Сега решете уравнението x=\frac{-7±13}{2}, когато ± е плюс. Съберете -7 с 13.
x=3
Разделете 6 на 2.
x=-\frac{20}{2}
Сега решете уравнението x=\frac{-7±13}{2}, когато ± е минус. Извадете 13 от -7.
x=-10
Разделете -20 на 2.
x^{2}+7x-30=\left(x-3\right)\left(x-\left(-10\right)\right)
Разложете на множители първоначалния израз, като използвате ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Заместете x_{1} с 3 и x_{2} с -10.
x^{2}+7x-30=\left(x-3\right)\left(x+10\right)
Опростете всички изрази от вида p-\left(-q\right) на p+q.