Решаване за x
x=-6
x=2
Граф
Дял
Копирано в клипборда
x^{2}+4x=12
Умножете 9 по \frac{4}{3}, за да получите 12.
x^{2}+4x-12=0
Извадете 12 и от двете страни.
a+b=4 ab=-12
За да се реши уравнението, коефициентът x^{2}+4x-12 с помощта на формула x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). За да намерите a и b, настройте система, която да бъде решена.
-1,12 -2,6 -3,4
Тъй като ab е отрицателен, a и b имат противоположни знаци. Тъй като a+b е положително, положителното число има по-голяма абсолютна стойност от отрицателното. Изброяване на всички тези целочислени двойки, които придават -12 на продукта.
-1+12=11 -2+6=4 -3+4=1
Изчислете сумата за всяка двойка.
a=-2 b=6
Решението е двойката, която дава сума 4.
\left(x-2\right)\left(x+6\right)
Пренапишете разложения на множители израз \left(x+a\right)\left(x+b\right) с помощта на получените стойности.
x=2 x=-6
За да намерите решения за уравнение, решете x-2=0 и x+6=0.
x^{2}+4x=12
Умножете 9 по \frac{4}{3}, за да получите 12.
x^{2}+4x-12=0
Извадете 12 и от двете страни.
a+b=4 ab=1\left(-12\right)=-12
За да се реши уравнението, коефициентът е от лявата страна по групи. Първо, лявата страна трябва да бъде пренаписана като x^{2}+ax+bx-12. За да намерите a и b, настройте система, която да бъде решена.
-1,12 -2,6 -3,4
Тъй като ab е отрицателен, a и b имат противоположни знаци. Тъй като a+b е положително, положителното число има по-голяма абсолютна стойност от отрицателното. Изброяване на всички тези целочислени двойки, които придават -12 на продукта.
-1+12=11 -2+6=4 -3+4=1
Изчислете сумата за всяка двойка.
a=-2 b=6
Решението е двойката, която дава сума 4.
\left(x^{2}-2x\right)+\left(6x-12\right)
Напишете x^{2}+4x-12 като \left(x^{2}-2x\right)+\left(6x-12\right).
x\left(x-2\right)+6\left(x-2\right)
Фактор, x в първата и 6 във втората група.
\left(x-2\right)\left(x+6\right)
Разложете на множители общия член x-2, като използвате разпределителното свойство.
x=2 x=-6
За да намерите решения за уравнение, решете x-2=0 и x+6=0.
x^{2}+4x=12
Умножете 9 по \frac{4}{3}, за да получите 12.
x^{2}+4x-12=0
Извадете 12 и от двете страни.
x=\frac{-4±\sqrt{4^{2}-4\left(-12\right)}}{2}
Това уравнение е в стандартна форма: ax^{2}+bx+c=0. Заместете 1 вместо a, 4 вместо b и -12 вместо c във формулата на квадратното уравнение, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\left(-12\right)}}{2}
Повдигане на квадрат на 4.
x=\frac{-4±\sqrt{16+48}}{2}
Умножете -4 по -12.
x=\frac{-4±\sqrt{64}}{2}
Съберете 16 с 48.
x=\frac{-4±8}{2}
Получете корен квадратен от 64.
x=\frac{4}{2}
Сега решете уравнението x=\frac{-4±8}{2}, когато ± е плюс. Съберете -4 с 8.
x=2
Разделете 4 на 2.
x=-\frac{12}{2}
Сега решете уравнението x=\frac{-4±8}{2}, когато ± е минус. Извадете 8 от -4.
x=-6
Разделете -12 на 2.
x=2 x=-6
Уравнението сега е решено.
x^{2}+4x=12
Умножете 9 по \frac{4}{3}, за да получите 12.
x^{2}+4x+2^{2}=12+2^{2}
Разделете 4 – коефициента на члена на x – на 2, за да получите 2. След това съберете квадрата на 2 с двете страни на уравнението. С тази стъпка лявата страна на уравнението става точен квадрат.
x^{2}+4x+4=12+4
Повдигане на квадрат на 2.
x^{2}+4x+4=16
Съберете 12 с 4.
\left(x+2\right)^{2}=16
Разложете на множител x^{2}+4x+4. Като цяло, когато x^{2}+bx+c е точен квадрат, той винаги може да бъде разложен на множител като \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{16}
Получете корен квадратен от двете страни на равенството.
x+2=4 x+2=-4
Опростявайте.
x=2 x=-6
Извадете 2 и от двете страни на уравнението.
Примери
Квадратно уравнение
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Линейно уравнение
y = 3x + 4
Аритметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Едновременно уравнение
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграционен
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Граници
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}