Премини към основното съдържание
Решаване за x
Tick mark Image
Граф

Подобни проблеми от търсенето в мрежата

Дял

x^{2}+33x=6
Всички формули във форма ax^{2}+bx+c=0 може да се решат чрез използване на формулата за корени на квадратното уравнение: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Формулата за корени на квадратното уравнение дава две решения, когато ± е събиране, и едно, когато е изваждане.
x^{2}+33x-6=6-6
Извадете 6 и от двете страни на уравнението.
x^{2}+33x-6=0
Изваждане на 6 от самото него дава 0.
x=\frac{-33±\sqrt{33^{2}-4\left(-6\right)}}{2}
Това уравнение е в стандартна форма: ax^{2}+bx+c=0. Заместете 1 вместо a, 33 вместо b и -6 вместо c във формулата на квадратното уравнение, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-33±\sqrt{1089-4\left(-6\right)}}{2}
Повдигане на квадрат на 33.
x=\frac{-33±\sqrt{1089+24}}{2}
Умножете -4 по -6.
x=\frac{-33±\sqrt{1113}}{2}
Съберете 1089 с 24.
x=\frac{\sqrt{1113}-33}{2}
Сега решете уравнението x=\frac{-33±\sqrt{1113}}{2}, когато ± е плюс. Съберете -33 с \sqrt{1113}.
x=\frac{-\sqrt{1113}-33}{2}
Сега решете уравнението x=\frac{-33±\sqrt{1113}}{2}, когато ± е минус. Извадете \sqrt{1113} от -33.
x=\frac{\sqrt{1113}-33}{2} x=\frac{-\sqrt{1113}-33}{2}
Уравнението сега е решено.
x^{2}+33x=6
Квадратни уравнения като това могат да бъде решени чрез допълване до пълен квадрат. За да допълните до пълен квадрат, уравнението трябва първо да бъде във форма x^{2}+bx=c.
x^{2}+33x+\left(\frac{33}{2}\right)^{2}=6+\left(\frac{33}{2}\right)^{2}
Разделете 33 – коефициента на члена на x – на 2, за да получите \frac{33}{2}. След това съберете квадрата на \frac{33}{2} с двете страни на уравнението. С тази стъпка лявата страна на уравнението става точен квадрат.
x^{2}+33x+\frac{1089}{4}=6+\frac{1089}{4}
Повдигнете на квадрат \frac{33}{2}, като повдигнете на квадрат и числителя, и знаменателя на дробта.
x^{2}+33x+\frac{1089}{4}=\frac{1113}{4}
Съберете 6 с \frac{1089}{4}.
\left(x+\frac{33}{2}\right)^{2}=\frac{1113}{4}
Разложете на множител x^{2}+33x+\frac{1089}{4}. Като цяло, когато x^{2}+bx+c е точен квадрат, той винаги може да бъде разложен на множител като \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{33}{2}\right)^{2}}=\sqrt{\frac{1113}{4}}
Получете корен квадратен от двете страни на равенството.
x+\frac{33}{2}=\frac{\sqrt{1113}}{2} x+\frac{33}{2}=-\frac{\sqrt{1113}}{2}
Опростявайте.
x=\frac{\sqrt{1113}-33}{2} x=\frac{-\sqrt{1113}-33}{2}
Извадете \frac{33}{2} и от двете страни на уравнението.