Премини към основното съдържание
Решаване за x (complex solution)
Tick mark Image
Граф

Подобни проблеми от търсенето в мрежата

Дял

3x^{2}+5x+6=0
Групирайте x^{2} и 2x^{2}, за да получите 3x^{2}.
x=\frac{-5±\sqrt{5^{2}-4\times 3\times 6}}{2\times 3}
Това уравнение е в стандартна форма: ax^{2}+bx+c=0. Заместете 3 вместо a, 5 вместо b и 6 вместо c във формулата на квадратното уравнение, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\times 3\times 6}}{2\times 3}
Повдигане на квадрат на 5.
x=\frac{-5±\sqrt{25-12\times 6}}{2\times 3}
Умножете -4 по 3.
x=\frac{-5±\sqrt{25-72}}{2\times 3}
Умножете -12 по 6.
x=\frac{-5±\sqrt{-47}}{2\times 3}
Съберете 25 с -72.
x=\frac{-5±\sqrt{47}i}{2\times 3}
Получете корен квадратен от -47.
x=\frac{-5±\sqrt{47}i}{6}
Умножете 2 по 3.
x=\frac{-5+\sqrt{47}i}{6}
Сега решете уравнението x=\frac{-5±\sqrt{47}i}{6}, когато ± е плюс. Съберете -5 с i\sqrt{47}.
x=\frac{-\sqrt{47}i-5}{6}
Сега решете уравнението x=\frac{-5±\sqrt{47}i}{6}, когато ± е минус. Извадете i\sqrt{47} от -5.
x=\frac{-5+\sqrt{47}i}{6} x=\frac{-\sqrt{47}i-5}{6}
Уравнението сега е решено.
3x^{2}+5x+6=0
Групирайте x^{2} и 2x^{2}, за да получите 3x^{2}.
3x^{2}+5x=-6
Извадете 6 и от двете страни. Нещо, извадено от нула, дава отрицателната му стойност.
\frac{3x^{2}+5x}{3}=-\frac{6}{3}
Разделете двете страни на 3.
x^{2}+\frac{5}{3}x=-\frac{6}{3}
Делението на 3 отменя умножението по 3.
x^{2}+\frac{5}{3}x=-2
Разделете -6 на 3.
x^{2}+\frac{5}{3}x+\left(\frac{5}{6}\right)^{2}=-2+\left(\frac{5}{6}\right)^{2}
Разделете \frac{5}{3} – коефициента на члена на x – на 2, за да получите \frac{5}{6}. След това съберете квадрата на \frac{5}{6} с двете страни на уравнението. С тази стъпка лявата страна на уравнението става точен квадрат.
x^{2}+\frac{5}{3}x+\frac{25}{36}=-2+\frac{25}{36}
Повдигнете на квадрат \frac{5}{6}, като повдигнете на квадрат и числителя, и знаменателя на дробта.
x^{2}+\frac{5}{3}x+\frac{25}{36}=-\frac{47}{36}
Съберете -2 с \frac{25}{36}.
\left(x+\frac{5}{6}\right)^{2}=-\frac{47}{36}
Разложете на множител x^{2}+\frac{5}{3}x+\frac{25}{36}. Като цяло, когато x^{2}+bx+c е точен квадрат, той винаги може да бъде разложен на множител като \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{6}\right)^{2}}=\sqrt{-\frac{47}{36}}
Получете корен квадратен от двете страни на равенството.
x+\frac{5}{6}=\frac{\sqrt{47}i}{6} x+\frac{5}{6}=-\frac{\sqrt{47}i}{6}
Опростявайте.
x=\frac{-5+\sqrt{47}i}{6} x=\frac{-\sqrt{47}i-5}{6}
Извадете \frac{5}{6} и от двете страни на уравнението.