Решаване за x
x=-8
Граф
Дял
Копирано в клипборда
a+b=16 ab=64
За да се реши уравнението, коефициентът x^{2}+16x+64 с помощта на формула x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). За да намерите a и b, настройте система, която да бъде решена.
1,64 2,32 4,16 8,8
Тъй като ab е положителна, a и b имат един и същ знак. Тъй като a+b е положителна, a и b са положителни. Изброяване на всички тези целочислени двойки, които придават 64 на продукта.
1+64=65 2+32=34 4+16=20 8+8=16
Изчислете сумата за всяка двойка.
a=8 b=8
Решението е двойката, която дава сума 16.
\left(x+8\right)\left(x+8\right)
Пренапишете разложения на множители израз \left(x+a\right)\left(x+b\right) с помощта на получените стойности.
\left(x+8\right)^{2}
Преобразуване като биномен квадрат.
x=-8
За да намерите решение за уравнението, решете x+8=0.
a+b=16 ab=1\times 64=64
За да се реши уравнението, коефициентът е от лявата страна по групи. Първо, лявата страна трябва да бъде пренаписана като x^{2}+ax+bx+64. За да намерите a и b, настройте система, която да бъде решена.
1,64 2,32 4,16 8,8
Тъй като ab е положителна, a и b имат един и същ знак. Тъй като a+b е положителна, a и b са положителни. Изброяване на всички тези целочислени двойки, които придават 64 на продукта.
1+64=65 2+32=34 4+16=20 8+8=16
Изчислете сумата за всяка двойка.
a=8 b=8
Решението е двойката, която дава сума 16.
\left(x^{2}+8x\right)+\left(8x+64\right)
Напишете x^{2}+16x+64 като \left(x^{2}+8x\right)+\left(8x+64\right).
x\left(x+8\right)+8\left(x+8\right)
Фактор, x в първата и 8 във втората група.
\left(x+8\right)\left(x+8\right)
Разложете на множители общия член x+8, като използвате разпределителното свойство.
\left(x+8\right)^{2}
Преобразуване като биномен квадрат.
x=-8
За да намерите решение за уравнението, решете x+8=0.
x^{2}+16x+64=0
Всички формули във форма ax^{2}+bx+c=0 може да се решат чрез използване на формулата за корени на квадратното уравнение: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Формулата за корени на квадратното уравнение дава две решения, когато ± е събиране, и едно, когато е изваждане.
x=\frac{-16±\sqrt{16^{2}-4\times 64}}{2}
Това уравнение е в стандартна форма: ax^{2}+bx+c=0. Заместете 1 вместо a, 16 вместо b и 64 вместо c във формулата на квадратното уравнение, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-16±\sqrt{256-4\times 64}}{2}
Повдигане на квадрат на 16.
x=\frac{-16±\sqrt{256-256}}{2}
Умножете -4 по 64.
x=\frac{-16±\sqrt{0}}{2}
Съберете 256 с -256.
x=-\frac{16}{2}
Получете корен квадратен от 0.
x=-8
Разделете -16 на 2.
\left(x+8\right)^{2}=0
Разложете на множител x^{2}+16x+64. Като цяло, когато x^{2}+bx+c е точен квадрат, той винаги може да бъде разложен на множител като \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+8\right)^{2}}=\sqrt{0}
Получете корен квадратен от двете страни на равенството.
x+8=0 x+8=0
Опростявайте.
x=-8 x=-8
Извадете 8 и от двете страни на уравнението.
x=-8
Уравнението сега е решено. Решенията са еднакви.
Примери
Квадратно уравнение
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Линейно уравнение
y = 3x + 4
Аритметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Едновременно уравнение
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграционен
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Граници
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}