Премини към основното съдържание
Решаване за x
Tick mark Image
Граф

Подобни проблеми от търсенето в мрежата

Дял

a+b=12 ab=36
За да се реши уравнението, коефициентът x^{2}+12x+36 с помощта на формула x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). За да намерите a и b, настройте система, която да бъде решена.
1,36 2,18 3,12 4,9 6,6
Тъй като ab е положителна, a и b имат един и същ знак. Тъй като a+b е положителна, a и b са положителни. Изброяване на всички тези целочислени двойки, които придават 36 на продукта.
1+36=37 2+18=20 3+12=15 4+9=13 6+6=12
Изчислете сумата за всяка двойка.
a=6 b=6
Решението е двойката, която дава сума 12.
\left(x+6\right)\left(x+6\right)
Пренапишете разложения на множители израз \left(x+a\right)\left(x+b\right) с помощта на получените стойности.
\left(x+6\right)^{2}
Преобразуване като биномен квадрат.
x=-6
За да намерите решение за уравнението, решете x+6=0.
a+b=12 ab=1\times 36=36
За да се реши уравнението, коефициентът е от лявата страна по групи. Първо, лявата страна трябва да бъде пренаписана като x^{2}+ax+bx+36. За да намерите a и b, настройте система, която да бъде решена.
1,36 2,18 3,12 4,9 6,6
Тъй като ab е положителна, a и b имат един и същ знак. Тъй като a+b е положителна, a и b са положителни. Изброяване на всички тези целочислени двойки, които придават 36 на продукта.
1+36=37 2+18=20 3+12=15 4+9=13 6+6=12
Изчислете сумата за всяка двойка.
a=6 b=6
Решението е двойката, която дава сума 12.
\left(x^{2}+6x\right)+\left(6x+36\right)
Напишете x^{2}+12x+36 като \left(x^{2}+6x\right)+\left(6x+36\right).
x\left(x+6\right)+6\left(x+6\right)
Фактор, x в първата и 6 във втората група.
\left(x+6\right)\left(x+6\right)
Разложете на множители общия член x+6, като използвате разпределителното свойство.
\left(x+6\right)^{2}
Преобразуване като биномен квадрат.
x=-6
За да намерите решение за уравнението, решете x+6=0.
x^{2}+12x+36=0
Всички формули във форма ax^{2}+bx+c=0 може да се решат чрез използване на формулата за корени на квадратното уравнение: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Формулата за корени на квадратното уравнение дава две решения, когато ± е събиране, и едно, когато е изваждане.
x=\frac{-12±\sqrt{12^{2}-4\times 36}}{2}
Това уравнение е в стандартна форма: ax^{2}+bx+c=0. Заместете 1 вместо a, 12 вместо b и 36 вместо c във формулата на квадратното уравнение, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\times 36}}{2}
Повдигане на квадрат на 12.
x=\frac{-12±\sqrt{144-144}}{2}
Умножете -4 по 36.
x=\frac{-12±\sqrt{0}}{2}
Съберете 144 с -144.
x=-\frac{12}{2}
Получете корен квадратен от 0.
x=-6
Разделете -12 на 2.
\left(x+6\right)^{2}=0
Разложете на множител x^{2}+12x+36. Като цяло, когато x^{2}+bx+c е точен квадрат, той винаги може да бъде разложен на множител като \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+6\right)^{2}}=\sqrt{0}
Получете корен квадратен от двете страни на равенството.
x+6=0 x+6=0
Опростявайте.
x=-6 x=-6
Извадете 6 и от двете страни на уравнението.
x=-6
Уравнението сега е решено. Решенията са еднакви.