Разлагане на множители
\left(x+6\right)^{2}
Изчисляване
\left(x+6\right)^{2}
Граф
Дял
Копирано в клипборда
a+b=12 ab=1\times 36=36
Фактор на израза по групи. Първо, изразът трябва да бъде пренаписан като x^{2}+ax+bx+36. За да намерите a и b, настройте система, която да бъде решена.
1,36 2,18 3,12 4,9 6,6
Тъй като ab е положителна, a и b имат един и същ знак. Тъй като a+b е положителна, a и b са положителни. Изброяване на всички тези целочислени двойки, които придават 36 на продукта.
1+36=37 2+18=20 3+12=15 4+9=13 6+6=12
Изчислете сумата за всяка двойка.
a=6 b=6
Решението е двойката, която дава сума 12.
\left(x^{2}+6x\right)+\left(6x+36\right)
Напишете x^{2}+12x+36 като \left(x^{2}+6x\right)+\left(6x+36\right).
x\left(x+6\right)+6\left(x+6\right)
Фактор, x в първата и 6 във втората група.
\left(x+6\right)\left(x+6\right)
Разложете на множители общия член x+6, като използвате разпределителното свойство.
\left(x+6\right)^{2}
Преобразуване като биномен квадрат.
factor(x^{2}+12x+36)
Този тричлен има формата на тричленен квадрат, може би умножена с общ множител. Тричленните квадрати могат да се разложат чрез намиране на квадратните корени на първия и последния член.
\sqrt{36}=6
Намерете корен квадратен от последния член, 36.
\left(x+6\right)^{2}
Квадратът на тричлен е квадратът на бинома, който е сумата или разликата на квадратните корени на първия и последния член, като знакът се определя от знака на средния член на квадрата на тричлена.
x^{2}+12x+36=0
Квадратен полином може да се разложи на множители, като се използва трансформацията ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), където x_{1} и x_{2} са решенията на квадратното уравнение ax^{2}+bx+c=0.
x=\frac{-12±\sqrt{12^{2}-4\times 36}}{2}
Всички формули във форма ax^{2}+bx+c=0 може да се решат чрез използване на формулата за корени на квадратното уравнение: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Формулата за корени на квадратното уравнение дава две решения, когато ± е събиране, и едно, когато е изваждане.
x=\frac{-12±\sqrt{144-4\times 36}}{2}
Повдигане на квадрат на 12.
x=\frac{-12±\sqrt{144-144}}{2}
Умножете -4 по 36.
x=\frac{-12±\sqrt{0}}{2}
Съберете 144 с -144.
x=\frac{-12±0}{2}
Получете корен квадратен от 0.
x^{2}+12x+36=\left(x-\left(-6\right)\right)\left(x-\left(-6\right)\right)
Разложете на множители първоначалния израз, като използвате ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Заместете x_{1} с -6 и x_{2} с -6.
x^{2}+12x+36=\left(x+6\right)\left(x+6\right)
Опростете всички изрази от вида p-\left(-q\right) на p+q.
Примери
Квадратно уравнение
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Линейно уравнение
y = 3x + 4
Аритметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Едновременно уравнение
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграционен
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Граници
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}