Решаване за x
x=-9
x=-3
Граф
Дял
Копирано в клипборда
a+b=12 ab=27
За да се реши уравнението, коефициентът x^{2}+12x+27 с помощта на формула x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). За да намерите a и b, настройте система, която да бъде решена.
1,27 3,9
Тъй като ab е положителна, a и b имат един и същ знак. Тъй като a+b е положителна, a и b са положителни. Изброяване на всички тези целочислени двойки, които придават 27 на продукта.
1+27=28 3+9=12
Изчислете сумата за всяка двойка.
a=3 b=9
Решението е двойката, която дава сума 12.
\left(x+3\right)\left(x+9\right)
Пренапишете разложения на множители израз \left(x+a\right)\left(x+b\right) с помощта на получените стойности.
x=-3 x=-9
За да намерите решения за уравнение, решете x+3=0 и x+9=0.
a+b=12 ab=1\times 27=27
За да се реши уравнението, коефициентът е от лявата страна по групи. Първо, лявата страна трябва да бъде пренаписана като x^{2}+ax+bx+27. За да намерите a и b, настройте система, която да бъде решена.
1,27 3,9
Тъй като ab е положителна, a и b имат един и същ знак. Тъй като a+b е положителна, a и b са положителни. Изброяване на всички тези целочислени двойки, които придават 27 на продукта.
1+27=28 3+9=12
Изчислете сумата за всяка двойка.
a=3 b=9
Решението е двойката, която дава сума 12.
\left(x^{2}+3x\right)+\left(9x+27\right)
Напишете x^{2}+12x+27 като \left(x^{2}+3x\right)+\left(9x+27\right).
x\left(x+3\right)+9\left(x+3\right)
Фактор, x в първата и 9 във втората група.
\left(x+3\right)\left(x+9\right)
Разложете на множители общия член x+3, като използвате разпределителното свойство.
x=-3 x=-9
За да намерите решения за уравнение, решете x+3=0 и x+9=0.
x^{2}+12x+27=0
Всички формули във форма ax^{2}+bx+c=0 може да се решат чрез използване на формулата за корени на квадратното уравнение: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Формулата за корени на квадратното уравнение дава две решения, когато ± е събиране, и едно, когато е изваждане.
x=\frac{-12±\sqrt{12^{2}-4\times 27}}{2}
Това уравнение е в стандартна форма: ax^{2}+bx+c=0. Заместете 1 вместо a, 12 вместо b и 27 вместо c във формулата на квадратното уравнение, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\times 27}}{2}
Повдигане на квадрат на 12.
x=\frac{-12±\sqrt{144-108}}{2}
Умножете -4 по 27.
x=\frac{-12±\sqrt{36}}{2}
Съберете 144 с -108.
x=\frac{-12±6}{2}
Получете корен квадратен от 36.
x=-\frac{6}{2}
Сега решете уравнението x=\frac{-12±6}{2}, когато ± е плюс. Съберете -12 с 6.
x=-3
Разделете -6 на 2.
x=-\frac{18}{2}
Сега решете уравнението x=\frac{-12±6}{2}, когато ± е минус. Извадете 6 от -12.
x=-9
Разделете -18 на 2.
x=-3 x=-9
Уравнението сега е решено.
x^{2}+12x+27=0
Квадратни уравнения като това могат да бъде решени чрез допълване до пълен квадрат. За да допълните до пълен квадрат, уравнението трябва първо да бъде във форма x^{2}+bx=c.
x^{2}+12x+27-27=-27
Извадете 27 и от двете страни на уравнението.
x^{2}+12x=-27
Изваждане на 27 от самото него дава 0.
x^{2}+12x+6^{2}=-27+6^{2}
Разделете 12 – коефициента на члена на x – на 2, за да получите 6. След това съберете квадрата на 6 с двете страни на уравнението. С тази стъпка лявата страна на уравнението става точен квадрат.
x^{2}+12x+36=-27+36
Повдигане на квадрат на 6.
x^{2}+12x+36=9
Съберете -27 с 36.
\left(x+6\right)^{2}=9
Разложете на множител x^{2}+12x+36. Като цяло, когато x^{2}+bx+c е точен квадрат, той винаги може да бъде разложен на множител като \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+6\right)^{2}}=\sqrt{9}
Получете корен квадратен от двете страни на равенството.
x+6=3 x+6=-3
Опростявайте.
x=-3 x=-9
Извадете 6 и от двете страни на уравнението.
Примери
Квадратно уравнение
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Линейно уравнение
y = 3x + 4
Аритметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Едновременно уравнение
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграционен
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Граници
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}