Премини към основното съдържание
Решаване за x
Tick mark Image
Граф

Подобни проблеми от търсенето в мрежата

Дял

x^{2}+11x=3
Всички формули във форма ax^{2}+bx+c=0 може да се решат чрез използване на формулата за корени на квадратното уравнение: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Формулата за корени на квадратното уравнение дава две решения, когато ± е събиране, и едно, когато е изваждане.
x^{2}+11x-3=3-3
Извадете 3 и от двете страни на уравнението.
x^{2}+11x-3=0
Изваждане на 3 от самото него дава 0.
x=\frac{-11±\sqrt{11^{2}-4\left(-3\right)}}{2}
Това уравнение е в стандартна форма: ax^{2}+bx+c=0. Заместете 1 вместо a, 11 вместо b и -3 вместо c във формулата на квадратното уравнение, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-11±\sqrt{121-4\left(-3\right)}}{2}
Повдигане на квадрат на 11.
x=\frac{-11±\sqrt{121+12}}{2}
Умножете -4 по -3.
x=\frac{-11±\sqrt{133}}{2}
Съберете 121 с 12.
x=\frac{\sqrt{133}-11}{2}
Сега решете уравнението x=\frac{-11±\sqrt{133}}{2}, когато ± е плюс. Съберете -11 с \sqrt{133}.
x=\frac{-\sqrt{133}-11}{2}
Сега решете уравнението x=\frac{-11±\sqrt{133}}{2}, когато ± е минус. Извадете \sqrt{133} от -11.
x=\frac{\sqrt{133}-11}{2} x=\frac{-\sqrt{133}-11}{2}
Уравнението сега е решено.
x^{2}+11x=3
Квадратни уравнения като това могат да бъде решени чрез допълване до пълен квадрат. За да допълните до пълен квадрат, уравнението трябва първо да бъде във форма x^{2}+bx=c.
x^{2}+11x+\left(\frac{11}{2}\right)^{2}=3+\left(\frac{11}{2}\right)^{2}
Разделете 11 – коефициента на члена на x – на 2, за да получите \frac{11}{2}. След това съберете квадрата на \frac{11}{2} с двете страни на уравнението. С тази стъпка лявата страна на уравнението става точен квадрат.
x^{2}+11x+\frac{121}{4}=3+\frac{121}{4}
Повдигнете на квадрат \frac{11}{2}, като повдигнете на квадрат и числителя, и знаменателя на дробта.
x^{2}+11x+\frac{121}{4}=\frac{133}{4}
Съберете 3 с \frac{121}{4}.
\left(x+\frac{11}{2}\right)^{2}=\frac{133}{4}
Разложете на множител x^{2}+11x+\frac{121}{4}. Като цяло, когато x^{2}+bx+c е точен квадрат, той винаги може да бъде разложен на множител като \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{11}{2}\right)^{2}}=\sqrt{\frac{133}{4}}
Получете корен квадратен от двете страни на равенството.
x+\frac{11}{2}=\frac{\sqrt{133}}{2} x+\frac{11}{2}=-\frac{\sqrt{133}}{2}
Опростявайте.
x=\frac{\sqrt{133}-11}{2} x=\frac{-\sqrt{133}-11}{2}
Извадете \frac{11}{2} и от двете страни на уравнението.