Премини към основното съдържание
Разлагане на множители
Tick mark Image
Изчисляване
Tick mark Image
Граф

Подобни проблеми от търсенето в мрежата

Дял

\left(x^{8}-1\right)\left(x^{8}+1\right)
Напишете x^{16}-1 като \left(x^{8}\right)^{2}-1^{2}. Разликата между квадратите може да бъде заложена, като се използва правилото: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(x^{4}-1\right)\left(x^{4}+1\right)
Сметнете x^{8}-1. Напишете x^{8}-1 като \left(x^{4}\right)^{2}-1^{2}. Разликата между квадратите може да бъде заложена, като се използва правилото: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(x^{2}-1\right)\left(x^{2}+1\right)
Сметнете x^{4}-1. Напишете x^{4}-1 като \left(x^{2}\right)^{2}-1^{2}. Разликата между квадратите може да бъде заложена, като се използва правилото: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(x-1\right)\left(x+1\right)
Сметнете x^{2}-1. Напишете x^{2}-1 като x^{2}-1^{2}. Разликата между квадратите може да бъде заложена, като се използва правилото: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(x-1\right)\left(x+1\right)\left(x^{2}+1\right)\left(x^{4}+1\right)\left(x^{8}+1\right)
Пренапишете пълния разложен на множители израз. Следните полиноми не са разложени на множители, тъй като нямат рационални корени: x^{2}+1,x^{4}+1,x^{8}+1.