Премини към основното съдържание
Разлагане на множители
Tick mark Image
Изчисляване
Tick mark Image
Граф

Подобни проблеми от търсенето в мрежата

Дял

a+b=2 ab=1\times 1=1
Фактор на израза по групи. Първо, изразът трябва да бъде пренаписан като x^{2}+ax+bx+1. За да намерите a и b, настройте система, която да бъде решена.
a=1 b=1
Тъй като ab е положителна, a и b имат един и същ знак. Тъй като a+b е положителна, a и b са положителни. Единствената такава двойка е системното решение.
\left(x^{2}+x\right)+\left(x+1\right)
Напишете x^{2}+2x+1 като \left(x^{2}+x\right)+\left(x+1\right).
x\left(x+1\right)+x+1
Разложете на множители x в x^{2}+x.
\left(x+1\right)\left(x+1\right)
Разложете на множители общия член x+1, като използвате разпределителното свойство.
\left(x+1\right)^{2}
Преобразуване като биномен квадрат.
factor(x^{2}+2x+1)
Този тричлен има формата на тричленен квадрат, може би умножена с общ множител. Тричленните квадрати могат да се разложат чрез намиране на квадратните корени на първия и последния член.
\left(x+1\right)^{2}
Квадратът на тричлен е квадратът на бинома, който е сумата или разликата на квадратните корени на първия и последния член, като знакът се определя от знака на средния член на квадрата на тричлена.
x^{2}+2x+1=0
Квадратен полином може да се разложи на множители, като се използва трансформацията ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), където x_{1} и x_{2} са решенията на квадратното уравнение ax^{2}+bx+c=0.
x=\frac{-2±\sqrt{2^{2}-4}}{2}
Всички формули във форма ax^{2}+bx+c=0 може да се решат чрез използване на формулата за корени на квадратното уравнение: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Формулата за корени на квадратното уравнение дава две решения, когато ± е събиране, и едно, когато е изваждане.
x=\frac{-2±\sqrt{4-4}}{2}
Повдигане на квадрат на 2.
x=\frac{-2±\sqrt{0}}{2}
Съберете 4 с -4.
x=\frac{-2±0}{2}
Получете корен квадратен от 0.
x^{2}+2x+1=\left(x-\left(-1\right)\right)\left(x-\left(-1\right)\right)
Разложете на множители първоначалния израз, като използвате ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Заместете x_{1} с -1 и x_{2} с -1.
x^{2}+2x+1=\left(x+1\right)\left(x+1\right)
Опростете всички изрази от вида p-\left(-q\right) на p+q.