Премини към основното съдържание
Разлагане на множители
Tick mark Image
Изчисляване
Tick mark Image
Граф

Подобни проблеми от търсенето в мрежата

Дял

\left(x-4\right)\left(x^{2}+2x-3\right)
По теоремата за рационални коренни всички рационални корени на полинома са във формата \frac{p}{q}, където p разделя постоянния член 12, а q разделя водещия коефициент 1. Един такъв корен е 4. Разложете полинома на множители, като го разделите с x-4.
a+b=2 ab=1\left(-3\right)=-3
Сметнете x^{2}+2x-3. Фактор на израза по групи. Първо, изразът трябва да бъде пренаписан като x^{2}+ax+bx-3. За да намерите a и b, настройте система, която да бъде решена.
a=-1 b=3
Тъй като ab е отрицателен, a и b имат противоположни знаци. Тъй като a+b е положително, положителното число има по-голяма абсолютна стойност от отрицателното. Единствената такава двойка е системното решение.
\left(x^{2}-x\right)+\left(3x-3\right)
Напишете x^{2}+2x-3 като \left(x^{2}-x\right)+\left(3x-3\right).
x\left(x-1\right)+3\left(x-1\right)
Фактор, x в първата и 3 във втората група.
\left(x-1\right)\left(x+3\right)
Разложете на множители общия член x-1, като използвате разпределителното свойство.
\left(x-4\right)\left(x-1\right)\left(x+3\right)
Пренапишете пълния разложен на множители израз.