Разлагане на множители
\frac{\left(-x-2\right)\left(x-6\right)}{4}
Изчисляване
-\frac{x^{2}}{4}+x+3
Граф
Дял
Копирано в клипборда
\frac{-x^{2}+4x+12}{4}
Разложете на множители \frac{1}{4}.
a+b=4 ab=-12=-12
Сметнете -x^{2}+4x+12. Фактор на израза по групи. Първо, изразът трябва да бъде пренаписан като -x^{2}+ax+bx+12. За да намерите a и b, настройте система, която да бъде решена.
-1,12 -2,6 -3,4
Тъй като ab е отрицателен, a и b имат противоположни знаци. Тъй като a+b е положително, положителното число има по-голяма абсолютна стойност от отрицателното. Изброяване на всички тези целочислени двойки, които придават -12 на продукта.
-1+12=11 -2+6=4 -3+4=1
Изчислете сумата за всяка двойка.
a=6 b=-2
Решението е двойката, която дава сума 4.
\left(-x^{2}+6x\right)+\left(-2x+12\right)
Напишете -x^{2}+4x+12 като \left(-x^{2}+6x\right)+\left(-2x+12\right).
-x\left(x-6\right)-2\left(x-6\right)
Фактор, -x в първата и -2 във втората група.
\left(x-6\right)\left(-x-2\right)
Разложете на множители общия член x-6, като използвате разпределителното свойство.
\frac{\left(x-6\right)\left(-x-2\right)}{4}
Пренапишете пълния разложен на множители израз.
Примери
Квадратно уравнение
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Линейно уравнение
y = 3x + 4
Аритметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Едновременно уравнение
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграционен
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Граници
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}