Премини към основното съдържание
Разлагане на множители
Tick mark Image
Изчисляване
Tick mark Image
Граф

Подобни проблеми от търсенето в мрежата

Дял

a+b=3 ab=2\left(-5\right)=-10
Фактор на израза по групи. Първо, изразът трябва да бъде пренаписан като 2x^{2}+ax+bx-5. За да намерите a и b, настройте система, която да бъде решена.
-1,10 -2,5
Тъй като ab е отрицателен, a и b имат противоположни знаци. Тъй като a+b е положително, положителното число има по-голяма абсолютна стойност от отрицателното. Изброяване на всички тези целочислени двойки, които придават -10 на продукта.
-1+10=9 -2+5=3
Изчислете сумата за всяка двойка.
a=-2 b=5
Решението е двойката, която дава сума 3.
\left(2x^{2}-2x\right)+\left(5x-5\right)
Напишете 2x^{2}+3x-5 като \left(2x^{2}-2x\right)+\left(5x-5\right).
2x\left(x-1\right)+5\left(x-1\right)
Фактор, 2x в първата и 5 във втората група.
\left(x-1\right)\left(2x+5\right)
Разложете на множители общия член x-1, като използвате разпределителното свойство.
2x^{2}+3x-5=0
Квадратен полином може да се разложи на множители, като се използва трансформацията ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), където x_{1} и x_{2} са решенията на квадратното уравнение ax^{2}+bx+c=0.
x=\frac{-3±\sqrt{3^{2}-4\times 2\left(-5\right)}}{2\times 2}
Всички формули във форма ax^{2}+bx+c=0 може да се решат чрез използване на формулата за корени на квадратното уравнение: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Формулата за корени на квадратното уравнение дава две решения, когато ± е събиране, и едно, когато е изваждане.
x=\frac{-3±\sqrt{9-4\times 2\left(-5\right)}}{2\times 2}
Повдигане на квадрат на 3.
x=\frac{-3±\sqrt{9-8\left(-5\right)}}{2\times 2}
Умножете -4 по 2.
x=\frac{-3±\sqrt{9+40}}{2\times 2}
Умножете -8 по -5.
x=\frac{-3±\sqrt{49}}{2\times 2}
Съберете 9 с 40.
x=\frac{-3±7}{2\times 2}
Получете корен квадратен от 49.
x=\frac{-3±7}{4}
Умножете 2 по 2.
x=\frac{4}{4}
Сега решете уравнението x=\frac{-3±7}{4}, когато ± е плюс. Съберете -3 с 7.
x=1
Разделете 4 на 4.
x=-\frac{10}{4}
Сега решете уравнението x=\frac{-3±7}{4}, когато ± е минус. Извадете 7 от -3.
x=-\frac{5}{2}
Намаляване на дробта \frac{-10}{4} до най-малките членове чрез извличане на корен и съкращаване на 2.
2x^{2}+3x-5=2\left(x-1\right)\left(x-\left(-\frac{5}{2}\right)\right)
Разложете на множители първоначалния израз, като използвате ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Заместете x_{1} с 1 и x_{2} с -\frac{5}{2}.
2x^{2}+3x-5=2\left(x-1\right)\left(x+\frac{5}{2}\right)
Опростете всички изрази от вида p-\left(-q\right) на p+q.
2x^{2}+3x-5=2\left(x-1\right)\times \frac{2x+5}{2}
Съберете \frac{5}{2} и x, като намерите общ знаменател и съберете числителите. След това съкращавате дробта до най-прости членове, ако е възможно.
2x^{2}+3x-5=\left(x-1\right)\left(2x+5\right)
Съкратете най-големия общ множител 2 в 2 и 2.