Премини към основното съдържание
Разлагане на множители
Tick mark Image
Изчисляване
Tick mark Image
Граф

Подобни проблеми от търсенето в мрежата

Дял

\frac{-x^{3}+6x-4}{2}
Разложете на множители \frac{1}{2}.
\left(x-2\right)\left(-x^{2}-2x+2\right)
Сметнете -x^{3}+6x-4. По теоремата за рационални коренни всички рационални корени на полинома са във формата \frac{p}{q}, където p разделя постоянния член -4, а q разделя водещия коефициент -1. Един такъв корен е 2. Разложете полинома на множители, като го разделите с x-2.
\frac{\left(x-2\right)\left(-x^{2}-2x+2\right)}{2}
Пренапишете пълния разложен на множители израз. Полиномът -x^{2}-2x+2 не е разложен на множители, тъй като няма рационални корени.