Премини към основното съдържание
Решаване за a
Tick mark Image
Решаване за b
Tick mark Image

Подобни проблеми от търсенето в мрежата

Дял

\frac{\mathrm{d}}{\mathrm{d}x}(f)x\left(x^{2}+c\right)^{2}=\left(-a\right)x^{2}-2bx+ac
Умножете и двете страни на уравнението по \left(x^{2}+c\right)^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x\left(\left(x^{2}\right)^{2}+2x^{2}c+c^{2}\right)=\left(-a\right)x^{2}-2bx+ac
Използвайте Нютоновия бином \left(a+b\right)^{2}=a^{2}+2ab+b^{2}, за да разложите \left(x^{2}+c\right)^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x\left(x^{4}+2x^{2}c+c^{2}\right)=\left(-a\right)x^{2}-2bx+ac
За да повдигнете едно число, повдигнато на степен, на друга степен, умножете експонентите. Умножете 2 по 2, за да получите 4.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}=\left(-a\right)x^{2}-2bx+ac
Използвайте дистрибутивното свойство, за да умножите \frac{\mathrm{d}}{\mathrm{d}x}(f)x по x^{4}+2x^{2}c+c^{2}.
\left(-a\right)x^{2}-2bx+ac=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}
Разменете страните, така че всички променливи членове да са от лявата страна.
\left(-a\right)x^{2}+ac=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}+2bx
Добавете 2bx от двете страни.
-ax^{2}+ac=x^{5}\frac{\mathrm{d}}{\mathrm{d}x}(f)+2cx^{3}\frac{\mathrm{d}}{\mathrm{d}x}(f)+xc^{2}\frac{\mathrm{d}}{\mathrm{d}x}(f)+2bx
Пренаредете членовете.
\left(-x^{2}+c\right)a=x^{5}\frac{\mathrm{d}}{\mathrm{d}x}(f)+2cx^{3}\frac{\mathrm{d}}{\mathrm{d}x}(f)+xc^{2}\frac{\mathrm{d}}{\mathrm{d}x}(f)+2bx
Групирайте всички членове, съдържащи a.
\left(c-x^{2}\right)a=2bx
Уравнението е в стандартна форма.
\frac{\left(c-x^{2}\right)a}{c-x^{2}}=\frac{2bx}{c-x^{2}}
Разделете двете страни на -x^{2}+c.
a=\frac{2bx}{c-x^{2}}
Делението на -x^{2}+c отменя умножението по -x^{2}+c.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x\left(x^{2}+c\right)^{2}=\left(-a\right)x^{2}-2bx+ac
Умножете и двете страни на уравнението по \left(x^{2}+c\right)^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x\left(\left(x^{2}\right)^{2}+2x^{2}c+c^{2}\right)=\left(-a\right)x^{2}-2bx+ac
Използвайте Нютоновия бином \left(a+b\right)^{2}=a^{2}+2ab+b^{2}, за да разложите \left(x^{2}+c\right)^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x\left(x^{4}+2x^{2}c+c^{2}\right)=\left(-a\right)x^{2}-2bx+ac
За да повдигнете едно число, повдигнато на степен, на друга степен, умножете експонентите. Умножете 2 по 2, за да получите 4.
\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}=\left(-a\right)x^{2}-2bx+ac
Използвайте дистрибутивното свойство, за да умножите \frac{\mathrm{d}}{\mathrm{d}x}(f)x по x^{4}+2x^{2}c+c^{2}.
\left(-a\right)x^{2}-2bx+ac=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}
Разменете страните, така че всички променливи членове да са от лявата страна.
-2bx+ac=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}-\left(-a\right)x^{2}
Извадете \left(-a\right)x^{2} и от двете страни.
-2bx=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}-\left(-a\right)x^{2}-ac
Извадете ac и от двете страни.
-2bx=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}+ax^{2}-ac
Умножете -1 по -1, за да получите 1.
\left(-2x\right)b=ax^{2}-ac
Уравнението е в стандартна форма.
\frac{\left(-2x\right)b}{-2x}=\frac{a\left(x^{2}-c\right)}{-2x}
Разделете двете страни на -2x.
b=\frac{a\left(x^{2}-c\right)}{-2x}
Делението на -2x отменя умножението по -2x.
b=-\frac{ax}{2}+\frac{ac}{2x}
Разделете a\left(x^{2}-c\right) на -2x.