Разлагане на множители
\left(a-1\right)\left(a^{6}+a^{5}+a^{4}+a^{3}+a^{2}+a+1\right)
Изчисляване
a^{7}-1
Дял
Копирано в клипборда
\left(a-1\right)\left(a^{6}+a^{5}+a^{4}+a^{3}+a^{2}+a+1\right)
По теоремата за рационални коренни всички рационални корени на полинома са във формата \frac{p}{q}, където p разделя постоянния член -1, а q разделя водещия коефициент 1. Един такъв корен е 1. Разложете полинома на множители, като го разделите с a-1. Полиномът a^{6}+a^{5}+a^{4}+a^{3}+a^{2}+a+1 не е разложен на множители, тъй като няма рационални корени.
Примери
Квадратно уравнение
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Линейно уравнение
y = 3x + 4
Аритметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Едновременно уравнение
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграционен
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Граници
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}