Решаване за A
A=\left(\frac{9999}{10000}+\frac{1}{50}i\right)P
Решаване за P
P=\left(\frac{99990000}{100020001}-\frac{2000000}{100020001}i\right)A
Дял
Копирано в клипборда
A=P\left(1+\frac{1}{100}i\right)^{2}
Разделете i на 100, за да получите \frac{1}{100}i.
A=P\left(\frac{9999}{10000}+\frac{1}{50}i\right)
Изчислявате 2 на степен 1+\frac{1}{100}i и получавате \frac{9999}{10000}+\frac{1}{50}i.
A=P\left(1+\frac{1}{100}i\right)^{2}
Разделете i на 100, за да получите \frac{1}{100}i.
A=P\left(\frac{9999}{10000}+\frac{1}{50}i\right)
Изчислявате 2 на степен 1+\frac{1}{100}i и получавате \frac{9999}{10000}+\frac{1}{50}i.
P\left(\frac{9999}{10000}+\frac{1}{50}i\right)=A
Разменете страните, така че всички променливи членове да са от лявата страна.
\left(\frac{9999}{10000}+\frac{1}{50}i\right)P=A
Уравнението е в стандартна форма.
\frac{\left(\frac{9999}{10000}+\frac{1}{50}i\right)P}{\frac{9999}{10000}+\frac{1}{50}i}=\frac{A}{\frac{9999}{10000}+\frac{1}{50}i}
Разделете двете страни на \frac{9999}{10000}+\frac{1}{50}i.
P=\frac{A}{\frac{9999}{10000}+\frac{1}{50}i}
Делението на \frac{9999}{10000}+\frac{1}{50}i отменя умножението по \frac{9999}{10000}+\frac{1}{50}i.
P=\left(\frac{99990000}{100020001}-\frac{2000000}{100020001}i\right)A
Разделете A на \frac{9999}{10000}+\frac{1}{50}i.
Примери
Квадратно уравнение
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Линейно уравнение
y = 3x + 4
Аритметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Едновременно уравнение
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграционен
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Граници
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}