Решаване за x
x=-9
x=0
Граф
Дял
Копирано в клипборда
9x^{2}+81x=0
Използвайте дистрибутивното свойство, за да умножите 9x по x+9.
x\left(9x+81\right)=0
Разложете на множители x.
x=0 x=-9
За да намерите решения за уравнение, решете x=0 и 9x+81=0.
9x^{2}+81x=0
Използвайте дистрибутивното свойство, за да умножите 9x по x+9.
x=\frac{-81±\sqrt{81^{2}}}{2\times 9}
Това уравнение е в стандартна форма: ax^{2}+bx+c=0. Заместете 9 вместо a, 81 вместо b и 0 вместо c във формулата на квадратното уравнение, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-81±81}{2\times 9}
Получете корен квадратен от 81^{2}.
x=\frac{-81±81}{18}
Умножете 2 по 9.
x=\frac{0}{18}
Сега решете уравнението x=\frac{-81±81}{18}, когато ± е плюс. Съберете -81 с 81.
x=0
Разделете 0 на 18.
x=-\frac{162}{18}
Сега решете уравнението x=\frac{-81±81}{18}, когато ± е минус. Извадете 81 от -81.
x=-9
Разделете -162 на 18.
x=0 x=-9
Уравнението сега е решено.
9x^{2}+81x=0
Използвайте дистрибутивното свойство, за да умножите 9x по x+9.
\frac{9x^{2}+81x}{9}=\frac{0}{9}
Разделете двете страни на 9.
x^{2}+\frac{81}{9}x=\frac{0}{9}
Делението на 9 отменя умножението по 9.
x^{2}+9x=\frac{0}{9}
Разделете 81 на 9.
x^{2}+9x=0
Разделете 0 на 9.
x^{2}+9x+\left(\frac{9}{2}\right)^{2}=\left(\frac{9}{2}\right)^{2}
Разделете 9 – коефициента на члена на x – на 2, за да получите \frac{9}{2}. След това съберете квадрата на \frac{9}{2} с двете страни на уравнението. С тази стъпка лявата страна на уравнението става точен квадрат.
x^{2}+9x+\frac{81}{4}=\frac{81}{4}
Повдигнете на квадрат \frac{9}{2}, като повдигнете на квадрат и числителя, и знаменателя на дробта.
\left(x+\frac{9}{2}\right)^{2}=\frac{81}{4}
Разложете на множител x^{2}+9x+\frac{81}{4}. Като цяло, когато x^{2}+bx+c е точен квадрат, той винаги може да бъде разложен на множител като \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{9}{2}\right)^{2}}=\sqrt{\frac{81}{4}}
Получете корен квадратен от двете страни на равенството.
x+\frac{9}{2}=\frac{9}{2} x+\frac{9}{2}=-\frac{9}{2}
Опростявайте.
x=0 x=-9
Извадете \frac{9}{2} и от двете страни на уравнението.
Примери
Квадратно уравнение
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Линейно уравнение
y = 3x + 4
Аритметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Едновременно уравнение
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграционен
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Граници
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}