Разлагане на множители
\left(a-2\right)\left(a+2\right)\left(-a^{2}+2a-4\right)\left(a^{2}+2a+4\right)
Изчисляване
\left(4-a^{2}\right)\left(\left(a^{2}+4\right)^{2}-4a^{2}\right)
Дял
Копирано в клипборда
\left(8+a^{3}\right)\left(8-a^{3}\right)
Напишете 64-a^{6} като 8^{2}-\left(-a^{3}\right)^{2}. Разликата между квадратите може да бъде заложена, като се използва правилото: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(a^{3}+8\right)\left(-a^{3}+8\right)
Пренаредете членовете.
\left(a+2\right)\left(a^{2}-2a+4\right)
Сметнете a^{3}+8. Напишете a^{3}+8 като a^{3}+2^{3}. Сумата на кубовете може да се отчете с помощта на правилото: p^{3}+q^{3}=\left(p+q\right)\left(p^{2}-pq+q^{2}\right).
\left(a-2\right)\left(-a^{2}-2a-4\right)
Сметнете -a^{3}+8. По теоремата за рационални коренни всички рационални корени на полинома са във формата \frac{p}{q}, където p разделя постоянния член 8, а q разделя водещия коефициент -1. Един такъв корен е 2. Разложете полинома на множители, като го разделите с a-2.
\left(-a^{2}-2a-4\right)\left(a-2\right)\left(a+2\right)\left(a^{2}-2a+4\right)
Пренапишете пълния разложен на множители израз. Следните полиноми не са разложени на множители, тъй като нямат рационални корени: -a^{2}-2a-4,a^{2}-2a+4.
Примери
Квадратно уравнение
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Линейно уравнение
y = 3x + 4
Аритметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Едновременно уравнение
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграционен
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Граници
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}