Премини към основното съдържание
Решаване за x
Tick mark Image
Граф

Подобни проблеми от търсенето в мрежата

Дял

53x^{2}+5x-12=0
За да решите неравенството, разложете на множители лявата страна. Квадратен полином може да се разложи на множители, като се използва трансформацията ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), където x_{1} и x_{2} са решенията на квадратното уравнение ax^{2}+bx+c=0.
x=\frac{-5±\sqrt{5^{2}-4\times 53\left(-12\right)}}{2\times 53}
Всички уравнения от вида ax^{2}+bx+c=0 могат да бъдат решени чрез формулата за решаване на квадратно уравнение: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Заместете 53 за a, 5 за b и -12 за c във формулата за решаване на квадратно уравнение.
x=\frac{-5±\sqrt{2569}}{106}
Извършете изчисленията.
x=\frac{\sqrt{2569}-5}{106} x=\frac{-\sqrt{2569}-5}{106}
Решете уравнението x=\frac{-5±\sqrt{2569}}{106}, когато ± е плюс и когато ± е минус.
53\left(x-\frac{\sqrt{2569}-5}{106}\right)\left(x-\frac{-\sqrt{2569}-5}{106}\right)<0
Напишете отново неравенство с помощта на получените решения.
x-\frac{\sqrt{2569}-5}{106}>0 x-\frac{-\sqrt{2569}-5}{106}<0
За да бъде произведението отрицателно, x-\frac{\sqrt{2569}-5}{106} и x-\frac{-\sqrt{2569}-5}{106} трябва да бъдат с противоположни знаци. Разгледайте случая, когато x-\frac{\sqrt{2569}-5}{106} е положително, а x-\frac{-\sqrt{2569}-5}{106} е отрицателно.
x\in \emptyset
Това е невярно за всяко x.
x-\frac{-\sqrt{2569}-5}{106}>0 x-\frac{\sqrt{2569}-5}{106}<0
Разгледайте случая, когато x-\frac{-\sqrt{2569}-5}{106} е положително, а x-\frac{\sqrt{2569}-5}{106} е отрицателно.
x\in \left(\frac{-\sqrt{2569}-5}{106},\frac{\sqrt{2569}-5}{106}\right)
Решението, удовлетворяващо и двете неравенства, е x\in \left(\frac{-\sqrt{2569}-5}{106},\frac{\sqrt{2569}-5}{106}\right).
x\in \left(\frac{-\sqrt{2569}-5}{106},\frac{\sqrt{2569}-5}{106}\right)
Крайното решение е обединението на получените решения.