Разлагане на множители
\left(7x-3\right)^{2}
Изчисляване
\left(7x-3\right)^{2}
Граф
Дял
Копирано в клипборда
a+b=-42 ab=49\times 9=441
Фактор на израза по групи. Първо, изразът трябва да бъде пренаписан като 49x^{2}+ax+bx+9. За да намерите a и b, настройте система, която да бъде решена.
-1,-441 -3,-147 -7,-63 -9,-49 -21,-21
Тъй като ab е положителна, a и b имат един и същ знак. Тъй като a+b е отрицателен, a и b са отрицателни. Изброяване на всички тези целочислени двойки, които придават 441 на продукта.
-1-441=-442 -3-147=-150 -7-63=-70 -9-49=-58 -21-21=-42
Изчислете сумата за всяка двойка.
a=-21 b=-21
Решението е двойката, която дава сума -42.
\left(49x^{2}-21x\right)+\left(-21x+9\right)
Напишете 49x^{2}-42x+9 като \left(49x^{2}-21x\right)+\left(-21x+9\right).
7x\left(7x-3\right)-3\left(7x-3\right)
Фактор, 7x в първата и -3 във втората група.
\left(7x-3\right)\left(7x-3\right)
Разложете на множители общия член 7x-3, като използвате разпределителното свойство.
\left(7x-3\right)^{2}
Преобразуване като биномен квадрат.
factor(49x^{2}-42x+9)
Този тричлен има формата на тричленен квадрат, може би умножена с общ множител. Тричленните квадрати могат да се разложат чрез намиране на квадратните корени на първия и последния член.
gcf(49,-42,9)=1
Намерете най-големия общ множител на коефициентите.
\sqrt{49x^{2}}=7x
Намерете корен квадратен от първия член, 49x^{2}.
\sqrt{9}=3
Намерете корен квадратен от последния член, 9.
\left(7x-3\right)^{2}
Квадратът на тричлен е квадратът на бинома, който е сумата или разликата на квадратните корени на първия и последния член, като знакът се определя от знака на средния член на квадрата на тричлена.
49x^{2}-42x+9=0
Квадратен полином може да се разложи на множители, като се използва трансформацията ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), където x_{1} и x_{2} са решенията на квадратното уравнение ax^{2}+bx+c=0.
x=\frac{-\left(-42\right)±\sqrt{\left(-42\right)^{2}-4\times 49\times 9}}{2\times 49}
Всички формули във форма ax^{2}+bx+c=0 може да се решат чрез използване на формулата за корени на квадратното уравнение: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Формулата за корени на квадратното уравнение дава две решения, когато ± е събиране, и едно, когато е изваждане.
x=\frac{-\left(-42\right)±\sqrt{1764-4\times 49\times 9}}{2\times 49}
Повдигане на квадрат на -42.
x=\frac{-\left(-42\right)±\sqrt{1764-196\times 9}}{2\times 49}
Умножете -4 по 49.
x=\frac{-\left(-42\right)±\sqrt{1764-1764}}{2\times 49}
Умножете -196 по 9.
x=\frac{-\left(-42\right)±\sqrt{0}}{2\times 49}
Съберете 1764 с -1764.
x=\frac{-\left(-42\right)±0}{2\times 49}
Получете корен квадратен от 0.
x=\frac{42±0}{2\times 49}
Противоположното на -42 е 42.
x=\frac{42±0}{98}
Умножете 2 по 49.
49x^{2}-42x+9=49\left(x-\frac{3}{7}\right)\left(x-\frac{3}{7}\right)
Разложете на множители първоначалния израз, като използвате ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Заместете x_{1} с \frac{3}{7} и x_{2} с \frac{3}{7}.
49x^{2}-42x+9=49\times \frac{7x-3}{7}\left(x-\frac{3}{7}\right)
Извадете \frac{3}{7} от x, като намерите общ знаменател и извадите числителите. След това съкратете дробта до най-прости членове, ако е възможно.
49x^{2}-42x+9=49\times \frac{7x-3}{7}\times \frac{7x-3}{7}
Извадете \frac{3}{7} от x, като намерите общ знаменател и извадите числителите. След това съкратете дробта до най-прости членове, ако е възможно.
49x^{2}-42x+9=49\times \frac{\left(7x-3\right)\left(7x-3\right)}{7\times 7}
Умножете \frac{7x-3}{7} по \frac{7x-3}{7}, като умножавате числител по числител и знаменател по знаменател. След това съкратете дробта до най-малкия възможен брой членове.
49x^{2}-42x+9=49\times \frac{\left(7x-3\right)\left(7x-3\right)}{49}
Умножете 7 по 7.
49x^{2}-42x+9=\left(7x-3\right)\left(7x-3\right)
Съкратете най-големия общ множител 49 в 49 и 49.
Примери
Квадратно уравнение
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Линейно уравнение
y = 3x + 4
Аритметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Едновременно уравнение
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграционен
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Граници
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}