Разлагане на множители
4\left(a+1\right)\left(a-1\right)^{2}
Изчисляване
4\left(a+1\right)\left(a-1\right)^{2}
Дял
Копирано в клипборда
4\left(a^{3}-a^{2}-a+1\right)
Разложете на множители 4.
a^{2}\left(a-1\right)-\left(a-1\right)
Сметнете a^{3}-a^{2}-a+1. Извършете a^{3}-a^{2}-a+1=\left(a^{3}-a^{2}\right)+\left(-a+1\right) на групиране и Отложете a^{2} в първата и -1 във втората група.
\left(a-1\right)\left(a^{2}-1\right)
Разложете на множители общия член a-1, като използвате разпределителното свойство.
\left(a-1\right)\left(a+1\right)
Сметнете a^{2}-1. Напишете a^{2}-1 като a^{2}-1^{2}. Разликата между квадратите може да бъде заложена, като се използва правилото: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
4\left(a-1\right)^{2}\left(a+1\right)
Пренапишете пълния разложен на множители израз.
Примери
Квадратно уравнение
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Линейно уравнение
y = 3x + 4
Аритметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Едновременно уравнение
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграционен
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Граници
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}