Премини към основното съдържание
Решаване за x
Tick mark Image
Граф

Подобни проблеми от търсенето в мрежата

Дял

±\frac{1}{3},±1
По теоремата за рационални коренни всички рационални корени на полинома са във формата \frac{p}{q}, където p разделя постоянния член -1, а q разделя водещия коефициент 3. Изредете всички възможности \frac{p}{q}.
x=-\frac{1}{3}
Намерете един такъв корен, като изпробвате всички целочислени стойности, започвайки от най-малката по абсолютна стойност. Ако не намерите целочислени корени, изпробвайте дробите.
x^{2}+x-1=0
Според теоремата за множителите x-k е множител на полинома за всеки корен k. Разделете 3x^{3}+4x^{2}-2x-1 на 3\left(x+\frac{1}{3}\right)=3x+1, за да получите x^{2}+x-1. Решаване на уравнението, където резултатът е равен на 0.
x=\frac{-1±\sqrt{1^{2}-4\times 1\left(-1\right)}}{2}
Всички уравнения от вида ax^{2}+bx+c=0 могат да бъдат решени чрез формулата за решаване на квадратно уравнение: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Заместете 1 за a, 1 за b и -1 за c във формулата за решаване на квадратно уравнение.
x=\frac{-1±\sqrt{5}}{2}
Извършете изчисленията.
x=\frac{-\sqrt{5}-1}{2} x=\frac{\sqrt{5}-1}{2}
Решете уравнението x^{2}+x-1=0, когато ± е плюс и когато ± е минус.
x=-\frac{1}{3} x=\frac{-\sqrt{5}-1}{2} x=\frac{\sqrt{5}-1}{2}
Изброяване на всички намерени решения.