Премини към основното съдържание
Изчисляване
Tick mark Image
Разлагане на множители
Tick mark Image
Граф

Подобни проблеми от търсенето в мрежата

Дял

-5x^{2}-2+6+5x
Групирайте 3x^{2} и -8x^{2}, за да получите -5x^{2}.
-5x^{2}+4+5x
Съберете -2 и 6, за да се получи 4.
factor(-5x^{2}-2+6+5x)
Групирайте 3x^{2} и -8x^{2}, за да получите -5x^{2}.
factor(-5x^{2}+4+5x)
Съберете -2 и 6, за да се получи 4.
-5x^{2}+5x+4=0
Квадратен полином може да се разложи на множители, като се използва трансформацията ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), където x_{1} и x_{2} са решенията на квадратното уравнение ax^{2}+bx+c=0.
x=\frac{-5±\sqrt{5^{2}-4\left(-5\right)\times 4}}{2\left(-5\right)}
Всички формули във форма ax^{2}+bx+c=0 може да се решат чрез използване на формулата за корени на квадратното уравнение: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Формулата за корени на квадратното уравнение дава две решения, когато ± е събиране, и едно, когато е изваждане.
x=\frac{-5±\sqrt{25-4\left(-5\right)\times 4}}{2\left(-5\right)}
Повдигане на квадрат на 5.
x=\frac{-5±\sqrt{25+20\times 4}}{2\left(-5\right)}
Умножете -4 по -5.
x=\frac{-5±\sqrt{25+80}}{2\left(-5\right)}
Умножете 20 по 4.
x=\frac{-5±\sqrt{105}}{2\left(-5\right)}
Съберете 25 с 80.
x=\frac{-5±\sqrt{105}}{-10}
Умножете 2 по -5.
x=\frac{\sqrt{105}-5}{-10}
Сега решете уравнението x=\frac{-5±\sqrt{105}}{-10}, когато ± е плюс. Съберете -5 с \sqrt{105}.
x=-\frac{\sqrt{105}}{10}+\frac{1}{2}
Разделете -5+\sqrt{105} на -10.
x=\frac{-\sqrt{105}-5}{-10}
Сега решете уравнението x=\frac{-5±\sqrt{105}}{-10}, когато ± е минус. Извадете \sqrt{105} от -5.
x=\frac{\sqrt{105}}{10}+\frac{1}{2}
Разделете -5-\sqrt{105} на -10.
-5x^{2}+5x+4=-5\left(x-\left(-\frac{\sqrt{105}}{10}+\frac{1}{2}\right)\right)\left(x-\left(\frac{\sqrt{105}}{10}+\frac{1}{2}\right)\right)
Разложете на множители първоначалния израз, като използвате ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Заместете x_{1} с \frac{1}{2}-\frac{\sqrt{105}}{10} и x_{2} с \frac{1}{2}+\frac{\sqrt{105}}{10}.