Премини към основното съдържание
Разлагане на множители
Tick mark Image
Изчисляване
Tick mark Image

Подобни проблеми от търсенето в мрежата

Дял

3\left(a^{4}-16\right)
Разложете на множители 3.
\left(a^{2}-4\right)\left(a^{2}+4\right)
Сметнете a^{4}-16. Напишете a^{4}-16 като \left(a^{2}\right)^{2}-4^{2}. Разликата между квадратите може да бъде заложена, като се използва правилото: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(a-2\right)\left(a+2\right)
Сметнете a^{2}-4. Напишете a^{2}-4 като a^{2}-2^{2}. Разликата между квадратите може да бъде заложена, като се използва правилото: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
3\left(a-2\right)\left(a+2\right)\left(a^{2}+4\right)
Пренапишете пълния разложен на множители израз. Полиномът a^{2}+4 не е разложен на множители, тъй като няма рационални корени.