Премини към основното съдържание
Решаване за c
Tick mark Image

Подобни проблеми от търсенето в мрежата

Дял

15-5\int x^{\frac{4}{3}}\mathrm{d}x=3x^{\frac{3}{3}}+5c
Умножете и двете страни на уравнението по 5.
15-5\int x^{\frac{4}{3}}\mathrm{d}x=3x^{1}+5c
Разделете 3 на 3, за да получите 1.
15-5\int x^{\frac{4}{3}}\mathrm{d}x=3x+5c
Изчислявате 1 на степен x и получавате x.
3x+5c=15-5\int x^{\frac{4}{3}}\mathrm{d}x
Разменете страните, така че всички променливи членове да са от лявата страна.
5c=15-5\int x^{\frac{4}{3}}\mathrm{d}x-3x
Извадете 3x и от двете страни.
5c=-\frac{15x^{\frac{7}{3}}}{7}-3x-5С+15
Уравнението е в стандартна форма.
\frac{5c}{5}=\frac{-\frac{15x^{\frac{7}{3}}}{7}-3x-5С+15}{5}
Разделете двете страни на 5.
c=\frac{-\frac{15x^{\frac{7}{3}}}{7}-3x-5С+15}{5}
Делението на 5 отменя умножението по 5.
c=-\frac{3x^{\frac{7}{3}}}{7}-\frac{3x}{5}-С+3
Разделете 15-\frac{15x^{\frac{7}{3}}}{7}-5С-3x на 5.