Премини към основното съдържание
Решаване за x
Tick mark Image
Граф

Подобни проблеми от търсенето в мрежата

Дял

3x^{2}-6=x^{2}-x-6
Използвайте дистрибутивното свойство, за да умножите x+2 по x-3 и да групирате подобните членове.
3x^{2}-6-x^{2}=-x-6
Извадете x^{2} и от двете страни.
2x^{2}-6=-x-6
Групирайте 3x^{2} и -x^{2}, за да получите 2x^{2}.
2x^{2}-6+x=-6
Добавете x от двете страни.
2x^{2}-6+x+6=0
Добавете 6 от двете страни.
2x^{2}+x=0
Съберете -6 и 6, за да се получи 0.
x\left(2x+1\right)=0
Разложете на множители x.
x=0 x=-\frac{1}{2}
За да намерите решения за уравнение, решете x=0 и 2x+1=0.
3x^{2}-6=x^{2}-x-6
Използвайте дистрибутивното свойство, за да умножите x+2 по x-3 и да групирате подобните членове.
3x^{2}-6-x^{2}=-x-6
Извадете x^{2} и от двете страни.
2x^{2}-6=-x-6
Групирайте 3x^{2} и -x^{2}, за да получите 2x^{2}.
2x^{2}-6+x=-6
Добавете x от двете страни.
2x^{2}-6+x+6=0
Добавете 6 от двете страни.
2x^{2}+x=0
Съберете -6 и 6, за да се получи 0.
x=\frac{-1±\sqrt{1^{2}}}{2\times 2}
Това уравнение е в стандартна форма: ax^{2}+bx+c=0. Заместете 2 вместо a, 1 вместо b и 0 вместо c във формулата на квадратното уравнение, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±1}{2\times 2}
Получете корен квадратен от 1^{2}.
x=\frac{-1±1}{4}
Умножете 2 по 2.
x=\frac{0}{4}
Сега решете уравнението x=\frac{-1±1}{4}, когато ± е плюс. Съберете -1 с 1.
x=0
Разделете 0 на 4.
x=-\frac{2}{4}
Сега решете уравнението x=\frac{-1±1}{4}, когато ± е минус. Извадете 1 от -1.
x=-\frac{1}{2}
Намаляване на дробта \frac{-2}{4} до най-малките членове чрез извличане на корен и съкращаване на 2.
x=0 x=-\frac{1}{2}
Уравнението сега е решено.
3x^{2}-6=x^{2}-x-6
Използвайте дистрибутивното свойство, за да умножите x+2 по x-3 и да групирате подобните членове.
3x^{2}-6-x^{2}=-x-6
Извадете x^{2} и от двете страни.
2x^{2}-6=-x-6
Групирайте 3x^{2} и -x^{2}, за да получите 2x^{2}.
2x^{2}-6+x=-6
Добавете x от двете страни.
2x^{2}+x=-6+6
Добавете 6 от двете страни.
2x^{2}+x=0
Съберете -6 и 6, за да се получи 0.
\frac{2x^{2}+x}{2}=\frac{0}{2}
Разделете двете страни на 2.
x^{2}+\frac{1}{2}x=\frac{0}{2}
Делението на 2 отменя умножението по 2.
x^{2}+\frac{1}{2}x=0
Разделете 0 на 2.
x^{2}+\frac{1}{2}x+\left(\frac{1}{4}\right)^{2}=\left(\frac{1}{4}\right)^{2}
Разделете \frac{1}{2} – коефициента на члена на x – на 2, за да получите \frac{1}{4}. След това съберете квадрата на \frac{1}{4} с двете страни на уравнението. С тази стъпка лявата страна на уравнението става точен квадрат.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{1}{16}
Повдигнете на квадрат \frac{1}{4}, като повдигнете на квадрат и числителя, и знаменателя на дробта.
\left(x+\frac{1}{4}\right)^{2}=\frac{1}{16}
Разложете на множител x^{2}+\frac{1}{2}x+\frac{1}{16}. Като цяло, когато x^{2}+bx+c е точен квадрат, той винаги може да бъде разложен на множител като \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{4}\right)^{2}}=\sqrt{\frac{1}{16}}
Получете корен квадратен от двете страни на равенството.
x+\frac{1}{4}=\frac{1}{4} x+\frac{1}{4}=-\frac{1}{4}
Опростявайте.
x=0 x=-\frac{1}{2}
Извадете \frac{1}{4} и от двете страни на уравнението.