Премини към основното съдържание
Разлагане на множители
Tick mark Image
Изчисляване
Tick mark Image
Граф

Подобни проблеми от търсенето в мрежата

Дял

2\left(x^{2}-4x-12\right)
Разложете на множители 2.
a+b=-4 ab=1\left(-12\right)=-12
Сметнете x^{2}-4x-12. Фактор на израза по групи. Първо, изразът трябва да бъде пренаписан като x^{2}+ax+bx-12. За да намерите a и b, настройте система, която да бъде решена.
1,-12 2,-6 3,-4
Тъй като ab е отрицателен, a и b имат противоположни знаци. Тъй като a+b е отрицателно, отрицателното число има по-голяма абсолютна стойност от положителното. Изброяване на всички тези целочислени двойки, които придават -12 на продукта.
1-12=-11 2-6=-4 3-4=-1
Изчислете сумата за всяка двойка.
a=-6 b=2
Решението е двойката, която дава сума -4.
\left(x^{2}-6x\right)+\left(2x-12\right)
Напишете x^{2}-4x-12 като \left(x^{2}-6x\right)+\left(2x-12\right).
x\left(x-6\right)+2\left(x-6\right)
Фактор, x в първата и 2 във втората група.
\left(x-6\right)\left(x+2\right)
Разложете на множители общия член x-6, като използвате разпределителното свойство.
2\left(x-6\right)\left(x+2\right)
Пренапишете пълния разложен на множители израз.
2x^{2}-8x-24=0
Квадратен полином може да се разложи на множители, като се използва трансформацията ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), където x_{1} и x_{2} са решенията на квадратното уравнение ax^{2}+bx+c=0.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 2\left(-24\right)}}{2\times 2}
Всички формули във форма ax^{2}+bx+c=0 може да се решат чрез използване на формулата за корени на квадратното уравнение: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Формулата за корени на квадратното уравнение дава две решения, когато ± е събиране, и едно, когато е изваждане.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 2\left(-24\right)}}{2\times 2}
Повдигане на квадрат на -8.
x=\frac{-\left(-8\right)±\sqrt{64-8\left(-24\right)}}{2\times 2}
Умножете -4 по 2.
x=\frac{-\left(-8\right)±\sqrt{64+192}}{2\times 2}
Умножете -8 по -24.
x=\frac{-\left(-8\right)±\sqrt{256}}{2\times 2}
Съберете 64 с 192.
x=\frac{-\left(-8\right)±16}{2\times 2}
Получете корен квадратен от 256.
x=\frac{8±16}{2\times 2}
Противоположното на -8 е 8.
x=\frac{8±16}{4}
Умножете 2 по 2.
x=\frac{24}{4}
Сега решете уравнението x=\frac{8±16}{4}, когато ± е плюс. Съберете 8 с 16.
x=6
Разделете 24 на 4.
x=-\frac{8}{4}
Сега решете уравнението x=\frac{8±16}{4}, когато ± е минус. Извадете 16 от 8.
x=-2
Разделете -8 на 4.
2x^{2}-8x-24=2\left(x-6\right)\left(x-\left(-2\right)\right)
Разложете на множители първоначалния израз, като използвате ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Заместете x_{1} с 6 и x_{2} с -2.
2x^{2}-8x-24=2\left(x-6\right)\left(x+2\right)
Опростете всички изрази от вида p-\left(-q\right) на p+q.