Решаване за x
x=-\frac{1}{2}=-0,5
x=0
Граф
Дял
Копирано в клипборда
x\left(2x+1\right)=0
Разложете на множители x.
x=0 x=-\frac{1}{2}
За да намерите решения за уравнение, решете x=0 и 2x+1=0.
2x^{2}+x=0
Всички формули във форма ax^{2}+bx+c=0 може да се решат чрез използване на формулата за корени на квадратното уравнение: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Формулата за корени на квадратното уравнение дава две решения, когато ± е събиране, и едно, когато е изваждане.
x=\frac{-1±\sqrt{1^{2}}}{2\times 2}
Това уравнение е в стандартна форма: ax^{2}+bx+c=0. Заместете 2 вместо a, 1 вместо b и 0 вместо c във формулата на квадратното уравнение, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±1}{2\times 2}
Получете корен квадратен от 1^{2}.
x=\frac{-1±1}{4}
Умножете 2 по 2.
x=\frac{0}{4}
Сега решете уравнението x=\frac{-1±1}{4}, когато ± е плюс. Съберете -1 с 1.
x=0
Разделете 0 на 4.
x=-\frac{2}{4}
Сега решете уравнението x=\frac{-1±1}{4}, когато ± е минус. Извадете 1 от -1.
x=-\frac{1}{2}
Намаляване на дробта \frac{-2}{4} до най-малките членове чрез извличане на корен и съкращаване на 2.
x=0 x=-\frac{1}{2}
Уравнението сега е решено.
2x^{2}+x=0
Квадратни уравнения като това могат да бъде решени чрез допълване до пълен квадрат. За да допълните до пълен квадрат, уравнението трябва първо да бъде във форма x^{2}+bx=c.
\frac{2x^{2}+x}{2}=\frac{0}{2}
Разделете двете страни на 2.
x^{2}+\frac{1}{2}x=\frac{0}{2}
Делението на 2 отменя умножението по 2.
x^{2}+\frac{1}{2}x=0
Разделете 0 на 2.
x^{2}+\frac{1}{2}x+\left(\frac{1}{4}\right)^{2}=\left(\frac{1}{4}\right)^{2}
Разделете \frac{1}{2} – коефициента на члена на x – на 2, за да получите \frac{1}{4}. След това съберете квадрата на \frac{1}{4} с двете страни на уравнението. С тази стъпка лявата страна на уравнението става точен квадрат.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{1}{16}
Повдигнете на квадрат \frac{1}{4}, като повдигнете на квадрат и числителя, и знаменателя на дробта.
\left(x+\frac{1}{4}\right)^{2}=\frac{1}{16}
Разложете на множител x^{2}+\frac{1}{2}x+\frac{1}{16}. Като цяло, когато x^{2}+bx+c е точен квадрат, той винаги може да бъде разложен на множител като \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{4}\right)^{2}}=\sqrt{\frac{1}{16}}
Получете корен квадратен от двете страни на равенството.
x+\frac{1}{4}=\frac{1}{4} x+\frac{1}{4}=-\frac{1}{4}
Опростявайте.
x=0 x=-\frac{1}{2}
Извадете \frac{1}{4} и от двете страни на уравнението.
Примери
Квадратно уравнение
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Линейно уравнение
y = 3x + 4
Аритметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Едновременно уравнение
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграционен
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Граници
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}