Решаване за x
x>6
Граф
Дял
Копирано в клипборда
18-\frac{1}{3}\times 24-\frac{1}{3}\left(-1\right)x-x<x
Използвайте дистрибутивното свойство, за да умножите -\frac{1}{3} по 24-x.
18+\frac{-24}{3}-\frac{1}{3}\left(-1\right)x-x<x
Изразете -\frac{1}{3}\times 24 като една дроб.
18-8-\frac{1}{3}\left(-1\right)x-x<x
Разделете -24 на 3, за да получите -8.
18-8+\frac{1}{3}x-x<x
Умножете -\frac{1}{3} по -1, за да получите \frac{1}{3}.
10+\frac{1}{3}x-x<x
Извадете 8 от 18, за да получите 10.
10-\frac{2}{3}x<x
Групирайте \frac{1}{3}x и -x, за да получите -\frac{2}{3}x.
10-\frac{2}{3}x-x<0
Извадете x и от двете страни.
10-\frac{5}{3}x<0
Групирайте -\frac{2}{3}x и -x, за да получите -\frac{5}{3}x.
-\frac{5}{3}x<-10
Извадете 10 и от двете страни. Нещо, извадено от нула, дава отрицателната му стойност.
x>-10\left(-\frac{3}{5}\right)
Умножете двете страни по -\frac{3}{5} – реципрочната стойност на -\frac{5}{3}. Тъй като -\frac{5}{3} е отрицателна, посоката на неравенство е променена.
x>\frac{-10\left(-3\right)}{5}
Изразете -10\left(-\frac{3}{5}\right) като една дроб.
x>\frac{30}{5}
Умножете -10 по -3, за да получите 30.
x>6
Разделете 30 на 5, за да получите 6.
Примери
Квадратно уравнение
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Линейно уравнение
y = 3x + 4
Аритметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Едновременно уравнение
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Диференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интеграционен
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Граници
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}